2007 Vol.20(1)

Display Mode:          |     

EXPERIMENTAL INVESTIGATION FOR THE EFFECT OF ROTATION ON THREE-DIMENSIONAL FLOW FIELD IN FILM-COOLED TURBINE
2007, 21(1).
[Abstract](2406) [PDF 360KB](133)
Abstract:
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotation on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.
DISCRETIZATION APPROACH USINGRAY-TESTING MODEL IN PARTINGLINE AND PARTING SURFACEGENERATION
2007, 21(1).
[Abstract](2383) [PDF 948KB](105)
Abstract:
Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in automatic cavity design based on the ray-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.
FOULING DETECTION IN FOOD VESSELS USING INTERDIGITAL LAMB WAVE TRANSDUCER
2007, 21(1).
[Abstract](2380) [PDF 266KB](217)
Abstract:
Lamb waves are used to detect fouling in food vessels. The propagation of the Lamb waves in plates exhibits many modes and dispersion characteristics, which have great influence on fouling detection. The relative distribution of the in-plane and out-of-plane displacement of the mode across the thickness of the plate will determine the sensitivity of the mode to a particular loading condition. By considering the dispersion and multi-mode characteristics of guided waves, an interdigital polyvi-nylidene fluoride (PVDF) transducer is designed to realize the mode selection of guided waves, and a single a0 mode is used for guided wave detection. Fouling detection experiments are conducted in the laboratory using epoxy adhesive on a thin plate. Using the interdigital PVDF transducer, three fouled areas are detected. Using one of the time-frequency analysis methods, the waveforms are further processed. This also demonstrates the validity of this method of fouling detection.
PRESSURE FORCE CONTROL FOR FABRICATION OF PLASTIC MICROFLUIDIC CHIPS WITH HOT EMBOSSING METHOD
2007, 21(1).
[Abstract](2315) [PDF 193KB](86)
Abstract:
A pressure force control system for hot embossing of microfluidic chips is designed with a moment motor and a ball bearing lead screw. Based on the numeric PID technique, the algorithm of pulsant integral accelerated PID control is presented and the negative effects of nonlinearity from friction, clearance and saturation are eliminated. In order to improve the quick-response characteristic, independent thread technique is adopted. The method of pressure force control based on pulsant integral accelerated PID control and independent thread technique is applied with satisfactory control performance.
DESIGN AND CONTROL OF AN ULTRAPRECISION STAGE USED IN GRATING TILING
2007, 21(1).
[Abstract](2266) [PDF 287KB](127)
Abstract:
In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.
MULTITASK SCHEDULING IN NETWORKED CONTROL SYSTEMS WITH APPLICATION TO LARGE SCALE VEHICLE CONTROL
2007, 21(1).
[Abstract](2152) [PDF 145KB](65)
Abstract:
Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.
SHARING AND PLANNING OF DISTRIBUTED EQUIPMENT FOR NETWORKED MANUFACTURING
2007, 21(1).
[Abstract](2153) [PDF 120KB](87)
Abstract:
Efficient utilization of the equipment distributed in different enterprises and optimal allocation of these resources is an important concern for networked manufacturing. The third party based equipment sharing approach is put forward to optimize the utilization of distributed equipment for networked manufacturing; Taking advantage of the shared equipment offered by equipment providers by means of lease agreement, the third party carries out production by establishing networked virtual factory. Operational mechanism of the third party based equipment sharing is discussed, and characteristics of this approach in achieving resource allocation are analyzed. Shared equipment planning is formulated as an optimization problem with the objective of maximizing profits for equipment coordinator, a mathematical model for shared equipment planning is developed. Finally a case study is discussed to show the effectiveness of the planning model.
MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES
2007, 21(1).
[Abstract](2124) [PDF 247KB](61)
Abstract:
A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.
EXPERIMENTAL STUDY ON HIGH-SPEED CHARACTERISTICS OF AUTOMOTIVE ENGINE OIL-PUMP CHAIN
2007, 21(1).
[Abstract](2177) [PDF 389KB](113)
Abstract:
The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it’s failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important “fall to pieces” failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.
HYPERSTATIC STRUCTURE MAPPING MODEL BUILDING AND OPTIMIZING DESIGN
2007, 21(1).
[Abstract](2288) [PDF 163KB](113)
Abstract:
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output data. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrapolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrapolation contrasts with integrity re-analysis. Any layer SSHLPS among 1~8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is applied into the same topological structure, with reduced distortion and assured precision.
DESIGN OF RECONFIGURABLE MANUFACTURING SYSTEMS WITH STRONGLY COUPLED NATURE
2007, 21(1).
[Abstract](2158) [PDF 235KB](78)
Abstract:
Today’s manufacturing environment forces manufacturing companies to make as many product variations as possible at affordable costs within a short time. Mass customisation is one of most important technologies for companies to achieve their objectives. Efforts to mass customisation should be made on two aspects: ① To modularize products and make them as less differences as possible; ② To design manufacturing resources and make them provide as many processes variations as possible. This paper reports our recent work on aspect ②, I.e. how to design a reconfigurable manufacturing system (RMS) so that it can be competent to accomplish various processes optimally; Reconfigurable robot system (RRS) is taken as an example. RMS design involves architecture design and configuration design, and configuration design is further divided in design analysis and design synthesis. Axiomatic design theory (ADT) is applied to architecture design, the features and issues of RRS configuration design are discussed, automatic modelling method is developed for design analysis, and concurrent design methodology is presented for design synthesis.
MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM
2007, 21(1).
[Abstract](2153) [PDF 271KB](241)
Abstract:
A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.
EFFECTS OF COOLED EXTERNAL EXHAUST GAS RECIRCULATION ON DIESEL HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE
2007, 21(1).
[Abstract](2183) [PDF 163KB](143)
Abstract:
The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low Nox and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder..
LUBRICATION FILM FORMATIONMECHANISM OF SLIPPER PAIRS IN LOW SPEED HIGH TORQUEHYDRAULIC MOTORS
2007, 21(1).
[Abstract](2227) [PDF 229KB](215)
Abstract:
Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
TOPOLOGY OPTIMIZATION OF MULTIPLE INPUTS AND MULTIPLE OUTPUTS COMPLIANT MECHANISMS
2007, 21(1).
[Abstract](2192) [PDF 170KB](331)
Abstract:
An optimal topology design method for multiple inputs and multiple outputs compliant micro-manipulation system is presented. Firstly, the topology design problem is posed in terms of a multiple inputs load and several specified output deflections. The compliance and stiffness of the system are expressed by the mutual potential energy and strain energy, respectively, which can be controlled by a multi-criteria objective function. Secondly, based on the optimality criteria method, a model solution algorithm is presented. Finally, a numerical example is presented to show the validity of the presented technique. The optimal topology of a 4 inputs and 4 outputs compliant mechanism is obtained by using the method, and the corresponding micro-positioning stage system is further de-signed.
DEVELOPMENT OF CALCULATING MODEL APPLICABLE FOR CYLINDER WALL DYNAMIC HEAT TRANSFER
2007, 21(1).
[Abstract](2193) [PDF 168KB](54)
Abstract:
In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the change of air conditioning cooling load can not be indicated. In accordance with submarine structure and heat transfer characteristics of its inner components, Laplace transformation to heat conduction differential equation of cylinder wall is carried out. The dynamic calculation of submarine conditioning load based on this model is also conducted, and the results of calculation are compared with those of static cooling load calculation. It is concluded that the dynamic cooling load calculation methods can illustrate the change of submarine air conditioning cooling load more accurate than the static one.
EFFECT OF FRICTIONAL FORCE ON GEARING CONTACT FATIGUE STRENGTH
2007, 21(1).
[Abstract](2198) [PDF 286KB](93)
Abstract:
The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.
APPROACHES FOR SUSTAINABLE MANUFACTURING
2007, 21(1).
[Abstract](2200) [PDF 237KB](162)
Abstract:
Sustainable development is a holistic approach harmonizing ecological, economical and socio-political needs with respect to the superior objective of enhancing human living standards. Thereby the availability of natural resources and the conservation of the ecosystems have to be considered that future generations have the possibility to meet their own needs. A long-term economical development demands the transition from a source-sink economy to a cycle economy as a result of limited resources, limited environmental capacities to absorb waste and emissions as well as increasing needs of a growing population. A reference model for sustainability in manufacturing is presented and used to illustrate sustainable approaches with respect to management, technology, process and product. Adaptation of products and components is a vital element for supporting efficient reuse of products and components. Consequently adaptation contributes to the ambitious goals of sustainability. Technological enablers for adaptation as modularity, information and communication technology are exemplarily introduced. Moreover, approaches for disseminating knowledge in sustainability are given.
NUMERICAL STUDY OF FLOW IN CONICAL DIFFUSER WITH VORTEX GENERATOR JETS
2007, 21(1).
[Abstract](2179) [PDF 206KB](216)
Abstract:
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.
NON-EQUILIBRIUM STATIONARYSTATE IN CHEMICAL REACTION OFSiO2/Fe AT INTERFACE OF SLAG/METAL AND ITS STABILITY DURING ARC WELDING
2007, 21(1).
[Abstract](2176) [PDF 160KB](85)
Abstract:
For characteristics of open and far from thermodynamic equilibrium in welding chemical reaction, a new kind of quantitative method, which is used to analyze direction and extent for chemical reaction of SiO2/Fe during quasi-steady state period, is introduced with the concept of non-equilibrium stationary state. The main idea is based on thermodynamic driving forces, which result in non-zero thermodynamic fluxes and lead to chemical reaction far away from thermodynamic equilibrium. There exists certain dynamic equilibrium relationship between rates of diffusion fluxes in liquid phase of reactants or products and the rate equation of chemical reaction when welding is in quasi-steady state. As result of this, a group of non-linear equations containing concentrations of all substances at interface of slag/liquid-metal may be established. Moreover the stability of this non-equilibrium stationary state is discussed using dissipative structure theory and it is concluded theoretically that this non-equilibrium stationary state for welding chemical reaction is of stability.
PROTOTYPE SURFACE MICRO- PRECISION IN FUSED DEPOSITION MODELING PROCESS
2007, 21(1).
[Abstract](2254) [PDF 433KB](164)
Abstract:
To aim at prototype parts fabricated with fused deposition modeling (FDM) process, the problems how to improve and enhance their surface micro-precision are studied. The producing mechanism of surface roughness is explained with three aspects concretely including the principle error of rapid prototyping (RP) process, the inherent characteristics of FDM process, and some micro-scratches on the surface of the extruded fiber. Based on the micro-characters of section shape of the FDM prototype, a physical model reflecting the outer shape characters is abstracted. With the physical simplified and deduced, the evaluating equations of surface roughness are acquired. According to the FDM sample parts with special design for experimental measurement, the real surface roughness values of different inclined planes are obtained. And the measuring values of surface roughness are compared with the calculation values. Furthermore, the causes of surface roughness deviation between measuring values and calculation values are respectively analyzed and studied. With the references of analytic conclusions, the measuring values of the experimental part surface are revised, and the revised values nearly accord with the calculation values. Based on the influencing principles of FDM process parameters and special post processing of FDM prototype parts, some concrete measures are proposed to reduce the surface roughness of FDM parts, and the applying effects are better.
TWO-STAGE OCCLUDED OBJECT RECOGNITION METHODFOR MICROASSEMBLY
2007, 21(1).
[Abstract](2199) [PDF 402KB](51)
Abstract:
A two-stage object recognition algorithm with the presence of occlusion is presented for microassembly. Coarse localization determines whether template is in image or not and approximately where it is, and fine localization gives its accurate position. In coarse localization, local feature, which is invariant to translation, rotation and occlusion, is used to form signatures. By comparing signature of template with that of image, approximate transformation parameter from template to image is ob-tained, which is used as initial parameter value for fine localization. An objective function, which is a function of transformation parameter, is constructed in fine localization and minimized to realize sub-pixel localization accuracy. The occluded pixels are not taken into account in objective function, so the localization accuracy will not be influenced by the occlusion.
OPTIMAL TORQUE CONTROLSTRATEGY FOR PARALLEL HYBRIDELECTRIC VEHICLE WITH AUTOMATICMECHANICAL TRANSMISSION
2007, 21(1).
[Abstract](2249) [PDF 178KB](349)
Abstract:
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
CONCEPTUAL MODELING BASED ON LOGICAL EXPRESSION AND EVOLVEMENT
2007, 21(1).
[Abstract](2176) [PDF 211KB](52)
Abstract:
Aiming at the problem of abstract and polytype information modeling in product conceptual design, a method of conceptual modeling based on logical expression and evolvement is presented. Based on the logic expressions of the product conceptual design information, a function/logic/structure mapping model is set up. First, the function semantics is transformed into logical expressions through function/logic mapping. Second, the methods of logical evolvement are utilized to describe the function analysis, function/structure mapping and structure combination. Last, the logical structure scheme is transformed into geometrical sketch through logic/structure mapping. The conceptual design information and modeling process are described uniformly with logical methods in the model, and an effective method for computer aided conceptual design based on the model is implemented.
CONCURRENT PRODUCT PORTFOLIO PLANNING AND MIXED PRODUCTASSEMBLY LINE BALANCING
2007, 21(1).
[Abstract](2124) [PDF 199KB](95)
Abstract:
Reconfigurable products and manufacturing systems have enabled manufacturers to provide “cost effective” variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variants to offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodol-ogy for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a sig-nificant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers dur-ing the early design stages of product family design.