Current Articles

Smart Materials
Effects of Orthogonal Heat Treatment on Microstructure and Mechanical Properties of GN9 Ferritic/Martensitic Steel
Tingwei Ma, Xianchao Hao, Ping Wang
2023, 36. doi: 10.1186/s10033-023-00984-5
[Abstract](268) [FullText HTML] (218) [PDF 2173KB](24)
Abstract:
Microstructure and mechanical properties of GN9 Ferritic/Martensitic steel for sodium- cooled fast reactors have been investigated through orthogonal design and analysis. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimeter (DSC), tensile and impact tests were used to evaluate the heat treatment parameters on yield strength, elongation and ductile-to-brittle transition temperature (DBTT). The results indicate that the microstructures of GN9 steel after orthogonal heat treatments consist of tempered martensite, M23C6, MX carbides and MX carbonitrides. The average prior austenite grains increase and the lath width decreases with the austenitizing temperature increasing from 1000 ℃ to 1080 ℃. Tempering temperature is the most important factor that influences the dislocation evolution, yield strength and elongation compared with austenitizing temperature and cooling methods. Austenitizing temperature, tempering temperature and cooling methods show interactive effects on DBTT. Carbide morphology and distribution, which is influenced by austenitizing and tempering temperatures, is the critical microstructural factor that influences the Charpy impact energy and DBTT. Based on the orthogonal design and microstructural analysis, the optimal heat treatment of GN9 steel is austenitizing at 1000 ℃ for 0.5 h followed by air cooling and tempering at 760 ℃ for 1.5 h.
Relationship between Hardness and Deformation during Cold Rolling Process of Complex Profiles
Dawei Zhang, Linghao Hu, Bingkun Liu, Shengdun Zhao
2023, 36. doi: 10.1186/s10033-023-00950-1
[Abstract](49) [FullText HTML] (40) [PDF 3401KB](0)
Abstract:
The hardening on surface of complex profiles such as thread and spline manufactured by cold rolling can effectively improve the mechanical properties and surface quality of rolled parts. The distribution of hardness in superficial layer is closely related to the deformation by rolling. To establish the suitable correlation model for describing the relationship between strain and hardness during cold rolling forming process of complex profiles is helpful to the optimization of rolling parameters and improvement of rolling process. In this study, a physical analog experiment reflecting the uneven deformation during complex-profile rolling process has been extracted and designed, and then the large date set (more than 400 data points) of training samples reflecting the local deformation characteristics of complex-profile rolling have been obtained. Several types of polynomials and power functions were adopted in regression analysis, and the regression correlation models of 45# steel were evaluated by the single-pass and multi-pass physical analog experiments and the complex-profile rolling experiment. The results indicated that the predicting accuracy of polynomial regression model is better in the strain range (i.e., \begin{document}$ \varepsilon \lt 1.2 $\end{document}) of training samples, and the correlation relationship between strain and hardness out strain range (i.e., \begin{document}$ \varepsilon \gt 1.2 $\end{document}) of training samples can be well described by power regression model; so the correlation relationship between strain and hardness during complex-profile rolling process of 45# steel can be characterized by a segmented function such as third-order polynomial in the range \begin{document}$ \varepsilon \lt 1.2 $\end{document} and power function with a fitting constant in the range \begin{document}$ \varepsilon \gt 1.2 $\end{document}; and the predicting error of the regression model by segmented function is less than 10%.
Prediction and Verification of Forming Limit Diagrams Based on a Modified Shear Failure Criterion
Haibo Wang, Zipeng Wang, Yu Yan, Yuanhui Xu
2023, 36. doi: 10.1186/s10033-023-00954-x
[Abstract](45) [FullText HTML] (42) [PDF 2316KB](2)
Abstract:
The forming limit diagram plays an important role in predicting the forming limit of sheet metals. Previous studies have shown that, the method to construct the forming limit diagram based on instability theory of the original shear failure criterion is effective and simple. The original shear instability criterion can accurately predict the left area of the forming limit diagram but not the right area. In this study, in order to improve the accuracy of the original shear failure criterion, a modified shear failure criterion was proposed based on in-depth analysis of the original shear failure criterion. The detailed improvement strategies of the shear failure criterion and the complete calculation process are given. Based on the modified shear failure criterion and different constitutive equations, the theoretical forming limit of TRIP780 steel and 5754O aluminum alloy sheet metals are calculated. By comparing the theoretical and experimental results, it is shown that proposed modified shear failure criterion can predict the right area of forming limit more reasonably than the original shear failure criterion. The effect of the pre-strain and constitutive equation on the forming limits are also analyzed in depth. The modified shear failure criterion proposed in this study provides an alternative and reliable method to predict forming limit of sheet metals.
New Technology of Multidirectional Loading Rotary Extrusion
Zhimin Zhang, Yong Xue, Xing Zhang, Beibei Dong, Mei Cheng, Zhe Chen
2023, 36. doi: 10.1186/s10033-023-00942-1
[Abstract](43) [FullText HTML] (43) [PDF 2699KB](2)
Abstract:
To satisfy the requirements for the precise formation of large-scale high-performance lightweight components with inner ring reinforcement, a new multidirectional loading rotary extrusion forming technology is developed to match the linear motion with the rotary motion and actively increases the strong shear force. Its principle is that the radial force and rotating torque increase when the blank is axially extruded and loaded. Through the synergistic action of axial, radial, and rotating motions, the orderly flow of metal is controlled, and the cumulative severe plastic deformation (SPD) of an "uplift-trowel" micro-area is generated. Consequently, materials are uniformly strengthened and toughened. Simultaneously, through the continuous deformation of a punch "ellipse-circle, " a high reinforcement component is grown on the cylinder wall to achieve the high-quality formation of cylindrical parts or the inner-ring-reinforcement components. Additionally, the effective strain increases with rotation speed, and the maximum intensity on the basal plane decreases as the number of revolutions increase. The punch structure also affects the axial extrusion loading and equivalent plastic strain. Thus, the proposed technology enriches the plastic forming theory and widens the application field of plastic forming. Furthermore, the formed large-scale high-performance inner-ring-stiffened magnesium components have been successfully verified in aerospace equipment, thereby solving the problems of integral forming and severe deformation strengthening and toughening. The developed technology has good prospects for mass production and application.
Dynamic Recrystallization Behavior of Q370qE Bridge Steel
Caiyi Liu, Shicheng Liang, Yan Peng, Jianliang Sun, Carlo Mapelli, Silvia Barella, Andrea Gruttadauria, Marco Belfi, Ludovica Rovatti
2023, 36. doi: 10.1186/s10033-023-00919-0
[Abstract](29) [FullText HTML] (27) [PDF 4648KB](0)
Abstract:
Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in guiding the thermomechanical processing process. In the present study, the hot deformation behavior of Q370qE bridge steel was investigated by hot compression tests conducted on a Gleeble 3800-GTC thermal-mechanical physical simulation system at temperatures ranging from 900 ℃ to 1100 ℃ and strain rates ranging from 0.01 s−1 to 10 s−1. The obtained results were used to plot the true stress-strain and work-hardening rate curves of the experimental steel, with the latter curves used to determine the critical strains for the initiation of DRX. The Zener-Hollomon equation was subsequently applied to establish the correspondence between temperature and strain rate during the high-temperature plastic deformation of bridge steel. In terms of the DRX volume fraction solution, a new method for establishing DRX volume fraction was proposed based on two theoretical models. The good weathering and corrosion resistance of bridge steel lead to difficulties in microstructure etching. To solve this, the MTEX technology was used to further develop EBSD data to characterize the original microstructure of Q370qE bridge steel. This paper lays the theoretical foundation for studying the DRX behavior of Q370qE bridge steel.
Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication
Kaiyue Lin, Zhuang Zhao, Yuting Li, Zihan Zeng, Xiaofeng Wei, Xiaoqiang Fan, Minhao Zhu
2023, 36. doi: 10.1186/s10033-023-00959-6
[Abstract](32) [FullText HTML] (30) [PDF 5324KB](1)
Abstract:
Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the influence of graphene dispersion on the thickening effect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modified graphene ([P66614][DEHP]-G). Then lithium complex grease was prepared by saponification with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefin (PAO20) as base oil and the modified-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modified-graphene lithium complex grease offered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefficient and wear volume up to 18.84% and 67.34%, respectively. With base oil overflow and afflux, well-dispersed [P66614][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition film. The synergy of deposited graphene-film, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.
Shape Memory Polymer Composite Booms with Applications in Reel-Type Solar Arrays
Hong Xiao, Sijie Wu, Dongdong Xie, Hongwei Guo, Li Ma, Yuxuan Wei, Rongqiang Liu
2023, 36: 67. doi: 10.1186/s10033-023-00892-8
[Abstract](31) [FullText HTML] (34) [PDF 3086KB](0)
Abstract:
Solar arrays are the primary energy source for spacecraft. Although traditional rigid solar arrays improve power supply, the quality increases proportionally. Hence, it is difficult to satisfy the requirements of high-power and low-cost space applications. In this study, a shape-memory polymer composite (SMPC) boom was designed, fabricated, and characterized for flexible reel-type solar arrays. The SMPC boom was fabricated from a smart material, a shape-memory polymer composite, whose mechanical properties were tested. Additionally, a mathematical model of the bending stiffness of the SMPC boom was developed, and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software. An SMPC boom was fabricated to demonstrate its shape memory characteristics, and the driving force of the booms with varying geometric parameters was investigated. We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability. The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays.
Effect of Initial Microstructure Prior to Extrusion on the Microstructure and Mechanical Properties of Extruded AZ80 Alloy with a Low Temperature and a Low Ratio
Hang Zhang, Haipeng Li, Rongguang Li, Boshu Liu, Ruizhi Wu, Dongyue Zhao, Shanshan Li
2023, 36: 72. doi: 10.1186/s10033-023-00901-w
[Abstract](34) [FullText HTML] (30) [PDF 8578KB](0)
Abstract:
Magnesium (Mg) alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications. However, compared to steel and aluminum alloys, Mg alloys have lower mechanical properties, which greatly limits their application. Extrusion is one of the most important processing methods for Mg and its alloys. However, the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation. In this work, commercial AZ80 alloys with different initial microstructures (as-cast and as-homogenized) were selected and extruded at a low extrusion temperature of 220 ℃ and a low extrusion ratio of 4. The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated. The results show that homogenized-extruded (HE) sample exhibits higher strength than the cast-extruded (CE) sample, which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains. Compared to the coarse compounds existing in CE sample, the fine dynamical precipitates of Mg17(Al, Zn)12 form in the HE sample can effectively promote the dynamical recrystallization during extrusion, while they exhibit a similar effect on the size and orientation of the recrystallized grains. These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.
Relations of Microstructural Attributes and Strength-Ductility of Zirconium Alloys with Hydrides
Chao Fang, Xiang Guo, Jianghua Li, Gang Chen
2023, 36: 89. doi: 10.1186/s10033-023-00925-2
[Abstract](144) [FullText HTML] (106) [PDF 2850KB](12)
Abstract:
As the first safety barrier of nuclear reactors, zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties. The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes, while brittle hydrides precipitate and thus deteriorate the overall performance. Based on the cohesive finite element method, the effects of cohesive strength, interfacial characteristics, and hydrides geometric characteristics on the strength and ductility of two-phase material (zirconium alloy with hydrides) are numerically simulated. The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy. Furthermore, the interface is revealed to have prominent effects on the overall fracture behavior. When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase, fracture initiates in the hydrides, which is consistent with the experimental phenomena. In addition, it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility. Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation.
The Influence of Crystallographic Orientation and Grain Boundary on Nanoindentation Behavior of Inconel 718 Superalloy Based on Crystal Plasticity Theory
Wenbo Zhu, Guangjian Yuan, Jianping Tan, Shuai Chang, Shantung Tu
2023, 36: 95. doi: 10.1186/s10033-023-00921-6
[Abstract](49) [FullText HTML] (34) [PDF 4810KB](1)
Abstract:
The crystal plasticity finite element method (CPFEM) is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level. However, few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level. In this study, a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior. A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results. The indentation force-displacement curves, stress distributions, and pile-up patterns are obtained by CPFEM simulation. The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation, but significantly influence the local stress distributions and shape of the pile-up patterns. As the difference in crystallographic orientation between grains increases, changes in the pile-up patterns and stress distributions caused by this effect become more significant. In addition, the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution. The obstruction on the continuity of stress distribution increases as the grain boundary angle increases. This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation.
Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing
Zhenglei Yu, Renlong Xin, Zezhou Xu, Yining Zhu, Xiaolong Zhang, Shijie Hao, Zhihui Zhang, Ping Liang
2023, 36: 104. doi: 10.1186/s10033-023-00898-2
[Abstract](55) [FullText HTML] (45) [PDF 2268KB](2)
Abstract:
With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus. The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus, like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.
Intelligent Manufacturing Technology
Detection and Characterization of Defects in Additive Manufacturing by Polarization-Based Imaging System
Xing Peng, Lingbao Kong
2023, 36. doi: 10.1186/s10033-023-00943-0
[Abstract](167) [FullText HTML] (130) [PDF 5712KB](9)
Abstract:
Additive manufacturing (AM) technology such as selective laser melting (SLM) often produces a high reflection phenomenon that makes defect detection and information extraction challenging. Meanwhile, it is essential to establish a characterization method for defect analysis to provide sufficient information for process diagnosis and optimization. However, there is still a lack of universal standards for the characterization of defects in SLM parts. In this study, a polarization-based imaging system was proposed, and a set of characterization parameters for SLM defects was established. The contrast, defect contour information, and high reflection suppression effect of the SLM part defects were analyzed. Comparative analysis was conducted on defect characterization parameters, including geometric and texture parameters. The experimental results demonstrated the effects of the polarization imaging system and verified the feasibility of the defect feature extraction and characterization method. The research work provides an effective solution for defect detection and helps to establish a universal standard for defect characterization in additive manufacturing.
A 5M Synchronization Mechanism for Digital Twin Shop-Floor
Weiran Liu, Jiangfeng Cheng, Zhiwen Wen, Xiaofu Zou, Zhaozong Wang, Hongting Liu, Fei Tao
2023, 36. doi: 10.1186/s10033-023-00965-8
[Abstract](190) [FullText HTML] (249) [PDF 15833KB](6)
Abstract:
In recent years, as a promising way to realize digital transformation, digital twin shop-floor (DTS) plays an important role in smart manufacturing. The core feature of DTS is the synchronization. How to implement and maintain the synchronization is critical for DTS. However, there is still a lack of a common definition for synchronization in DTS. Besides, a systematic synchronization mechanism for DTS is strongly needed. This paper first summarizes the definition and requirements of synchronization in DTS, to clarify the understanding of synchronization in DTS. Then, a 5M synchronization mechanism for DTS is proposed, where 5M refers to multi-system data, multi-fidelity model, multi-resource state, multi-level state, and multi-stage operation. As a bottom-up synchronization mechanism, 5M synchronization mechanism for DTS has the potential to support DTS to achieve and maintain physical-virtual state synchronization, and to realize operation synchronization of DTS. The implementation methods of 5M synchronization mechanism for DTS are also introduced. Finally, the proposed synchronization mechanism is validated in a digital twin satellite assembly shop-floor, which proves the effectiveness and feasibility of the mechanism.
Vision Sensing-Based Online Correction System for Robotic Weld Grinding
Jimin Ge, Zhaohui Deng, Shuixian Wang, Zhongyang Li, Wei Liu, Jiaxu Nie
2023, 36. doi: 10.1186/s10033-023-00955-w
[Abstract](108) [FullText HTML] (98) [PDF 3590KB](4)
Abstract:
The service cycle and dynamic performance of structural parts are affected by the weld grinding accuracy and surface consistency. Because of reasons such as assembly errors and thermal deformation, the actual track of the robot does not coincide with the theoretical track when the weld is ground offline, resulting in poor workpiece surface quality. Considering these problems, in this study, a vision sensing-based online correction system for robotic weld grinding was developed. The system mainly included three subsystems: weld feature extraction, grinding, and robot real-time control. The grinding equipment was first set as a substation for the robot using the WorkVisual software. The input/output (I/O) ports for communication between the robot and the grinding equipment were configured via the I/O mapping function to enable the robot to control the grinding equipment (start, stop, and speed control). Subsequently, the Ethernet KRL software package was used to write the data interaction structure to realize real-time communication between the robot and the laser vision system. To correct the measurement error caused by the bending deformation of the workpiece, we established a surface profile model of the base material in the weld area using a polynomial fitting algorithm to compensate for the measurement data. The corrected extracted weld width and height errors were reduced by 2.01% and 9.3%, respectively. Online weld seam extraction and correction experiments verified the effectiveness of the system's correction function, and the system could control the grinding trajectory error within 0.2 mm. The reliability of the system was verified through actual weld grinding experiments. The roughness, Ra, could reach 0.504 µm and the average residual height was within 0.21 mm. In this study, we developed a vision sensing-based online correction system for robotic weld grinding with a good correction effect and high robustness.
Vote-Based Feature Selection Method for Stratigraphic Recognition in Tunnelling Process of Shield Machine
Liman Yang, Xuze Guo, Jianfu Chen, Yixuan Wang, Huaixiang Ma, Yunhua Li, Zhiguo Yang, Yan Shi
2023, 36. doi: 10.1186/s10033-023-00932-3
[Abstract](108) [FullText HTML] (96) [PDF 2480KB](1)
Abstract:
Shield machines are currently the main tool for underground tunnel construction. Due to the complexity and variability of the underground construction environment, it is necessary to accurately identify the ground in real-time during the tunnel construction process to match and adjust the tunnel parameters according to the geological conditions to ensure construction safety. Compared with the traditional method of stratum identification based on staged drilling sampling, the real-time stratum identification method based on construction data has the advantages of low cost and high precision. Due to the huge amount of sensor data of the ultra-large diameter mud-water balance shield machine, in order to balance the identification time and recognition accuracy of the formation, it is necessary to screen the multivariate data features collected by hundreds of sensors. In response to this problem, this paper proposes a voting-based feature extraction method (VFS), which integrates multiple feature extraction algorithms FSM, and the frequency of each feature in all feature extraction algorithms is the basis for voting. At the same time, in order to verify the wide applicability of the method, several commonly used classification models are used to train and test the obtained effective feature data, and the model accuracy and recognition time are used as evaluation indicators, and the classification with the best combination with VFS is obtained. The experimental results of shield machine data of 6 different geological structures show that the average accuracy of 13 features obtained by VFS combined with different classification algorithms is 91%; among them, the random forest model takes less time and has the highest recognition accuracy, reaching 93%, showing best compatibility with VFS. Therefore, the VFS algorithm proposed in this paper has high reliability and wide applicability for stratum identification in the process of tunnel construction, and can be matched with a variety of classifier algorithms. By combining 13 features selected from shield machine data features with random forest, the identification of the construction stratum environment of shield tunnels can be well realized, and further theoretical guidance for underground engineering construction can be provided.
Mechanical Properties and Energy Absorption of Integrated AlSi10Mg Shell Structures with BCC Lattice Infill
Yingchun Bai, Jiayu Gao, Chengxiang Huang, Yue Li
2023, 36. doi: 10.1186/s10033-023-00973-8
[Abstract](175) [FullText HTML] (200) [PDF 4935KB](5)
Abstract:
Shell-infill structures comprise an exterior solid shell and an interior lattice infill, whose closed features yield superior comprehensive mechanical performance and light weight. Additive manufacturing (AM) can ensure the fabrication of complex structures. Although the mechanical behaviors of lattice structures have been extensively studied, the corresponding mechanical performances of integrated-manufactured shell structures with lattice infills should be systematically investigated due to the coupling effect of the exterior shell and lattice infill. This study investigated the mechanical properties and energy absorption of AlSi10Mg shell structures with a body-centered cubic lattice infill fabricated by AM. Quasi-static compressive experiments and corresponding finite element analysis were conducted to investigate the mechanical behavior. In addition, two different finite element modeling methods were compared to determine the appropriate modeling strategy in terms of deformation behavior. A study of different parameters, including lattice diameters and shell thicknesses, was conducted to identify their effect on mechanical performance. The results demonstrate the mechanical advantages of shell-infill structures, in which the exterior shell strengthens the lattice infill by up to 2.3 times in terms of the effective Young's modulus. Increasing the infill strut diameter can improve the specific energy absorption by up to 1.6 times.
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
Minglong Guo, Zhaocheng Wei, Minjie Wang, Zhiwei Zhao, Shengxian Liu
2023, 36. doi: 10.1186/s10033-023-00964-9
[Abstract](44) [FullText HTML] (35) [PDF 3725KB](2)
Abstract:
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size. Five-axis computer numerical control (CNC) milling is the main parts machining method, while dynamics analysis has always been a research hotspot. The cutting conditions determined by the cutter axis, tool path, and workpiece geometry are complex and changeable, which has made dynamics research a major challenge. For this reason, this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces, and proposes an efficient dynamics analysis model. To simplify the research object, the cutter position points along the tool path were discretized into inclined plane five-axis machining. The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining. These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object. Based on the in-cut cutting edge solved by the space limitation method, the dynamics of the inclined plane five-axis machining unit were studied, and the results were uniformly stored in the abstract space to produce a database. Finally, the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency. Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model. This study has great potential for the online synchronization of intelligent machining of large surfaces.
Design of a High Precision Multichannel 3D Bioprinter
Jintao Li, Bin Zhang, Yichen Luo, Huayong Yang
2023, 36. doi: 10.1186/s10033-023-00935-0
[Abstract](41) [FullText HTML] (33) [PDF 6650KB](4)
Abstract:
Three-dimensional (3D) printing technology is expected to solve the organ shortage problem. However, owing to the accuracy limitations, it is difficult for the current bioprinting technology to achieve an accurate control of the spatial position and distribution of a single cell or single component droplet. In this study, to accurately achieve the directional deposition of different cells and biological materials in the spatial position for the construction of large transplantable tissues and organs, a high-precision multichannel 3D bioprinter with submicron-level motion accuracy is designed, and concurrent and synergistic printing methods are proposed. Based on the high-precision motion characteristics of the gantry structure and the requirements of concurrent and synergistic printing, a 3D bioprinting system with a set of 6 channels is designed to achieve six-in-one printing. Based on the Visual C++ environment, a control system software that integrates the programmable multi-axis controller (PMAC) motion, pneumatic, and temperature control subsystems was developed and designed. Finally, based on measurements and experiments, the 3D bioprinter and its control system was verified to fulfil the requirements of multichannel, concurrent, and synergistic printing with submicron-level motion accuracy, significantly shortening the printing time and improving the printing efficiency. This study not only provides an equipment basis for printing complex heterogeneous tissue structures, but also improves the flexibility and functionality of bioprinting, and ultimately makes the construction of complex multicellular tissues or organs possible.
Effect of an Inclined Slots on the Power Consumption and Vortices Size in a Rushton Turbine Agitated Tank
Sarra Youcefi, Mohamed Bouzit, Abdelkader Youcefi, Abderrahim Mokhefi
2023, 36. doi: 10.1186/s10033-023-00981-8
[Abstract](44) [FullText HTML] (34) [PDF 3050KB](2)
Abstract:
Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations. Therefore, designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations. Hence, the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the sidewall of a cylindrical vessel equipped with a Rushton turbine. This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds. The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105, using the RANS k-ε turbulence model to govern the flow inside the stirred vessel, accounting for mass and momentum balances. The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configurations. Moreover, increasing the slot angle from 0 to 32.5° further reduces energy consumption and vortex size, especially with negative rotation speeds. On the other hand, increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size. The present research therefore proposes a design for constructing Rushton-turbine stirred vessels offering optimal operation, characterized by reduced energy consumption and minimized vortex size.
Geometric Accuracy and Energy Absorption Characteristics of 3D Printed Continuous Ramie Fiber Reinforced Thin-Walled Composite Structures
Kui Wang, Hao Lin, Antoine Le Duigou, Ruijun Cai, Yangyu Huang, Ping Cheng, Honghao Zhang, Yong Peng
2023, 36. doi: 10.1186/s10033-023-00982-7
[Abstract](48) [FullText HTML] (34) [PDF 3041KB](1)
Abstract:
The application of continuous natural fibers as reinforcement in composite thin-walled structures offers a feasible approach to achieve light weight and high strength while remaining environmentally friendly. In addition, additive manufacturing technology provides a favorable process foundation for its realization. In this study, the printability and energy absorption properties of 3D printed continuous fiber reinforced thin-walled structures with different configurations were investigated. The results suggested that a low printing speed and a proper layer thickness would mitigate the printing defects within the structures. The printing geometry accuracy of the structures could be further improved by rounding the sharp corners with appropriate radii. This study successfully fabricated structures with various configurations characterized by high geometric accuracy through printing parameters optimization and path smoothing. Moreover, the compressive property and energy absorption characteristics of the structures under quasi-static axial compression were evaluated and compared. It was found that all studied thin-walled structures exhibited progressive folding deformation patterns during compression. In particular, energy absorption process was achieved through the combined damage modes of plastic deformation, fiber pullout and delamination. Furthermore, the comparison results showed that the hexagonal structure exhibited the best energy absorption performance. The study revealed the structure-mechanical property relationship of 3D printed continuous fiber reinforced composite thin-walled structures through the analysis of multiscale failure characteristics and load response, which is valuable for broadening their applications.
Fast Estimation of Loader’s Shovel Load Volume by 3D Reconstruction of Material Piles
Binyun Wu, Shaojie Wang, Haojing Lin, Shijiang Li, Liang Hou
2023, 36. doi: 10.1186/s10033-023-00945-y
[Abstract](51) [FullText HTML] (34) [PDF 4890KB](0)
Abstract:
Fast and accurate measurement of the volume of earthmoving materials is of great significance for the real-time evaluation of loader operation efficiency and the realization of autonomous operation. Existing methods for volume measurement, such as total station-based methods, cannot measure the volume in real time, while the bucket-based method also has the disadvantage of poor universality. In this study, a fast estimation method for a loader’s shovel load volume by 3D reconstruction of material piles is proposed. First, a dense stereo matching method (QORB–MAPM) was proposed by integrating the improved quadtree ORB algorithm (QORB) and the maximum a posteriori probability model (MAPM), which achieves fast matching of feature points and dense 3D reconstruction of material piles. Second, the 3D point cloud model of the material piles before and after shoveling was registered and segmented to obtain the 3D point cloud model of the shoveling area, and the Alpha-shape algorithm of Delaunay triangulation was used to estimate the volume of the 3D point cloud model. Finally, a shovel loading volume measurement experiment was conducted under loose-soil working conditions. The results show that the shovel loading volume estimation method (QORB–MAPM VE) proposed in this study has higher estimation accuracy and less calculation time in volume estimation and bucket fill factor estimation, and it has significant theoretical research and engineering application value.
Effect of Micro Abrasive Slurry Jet Polishing on Properties of Coated Cemented Carbide Tools
Rongjuan Wang, Chengyong Wang
2023, 36. doi: 10.1186/s10033-023-00948-9
[Abstract](49) [FullText HTML] (35) [PDF 2219KB](3)
Abstract:
Owing to the popularization of coating technology, physical Vapor Deposition (PVD) coated tools have become indispensable in the cutting process. Additionally, the post-treatment of coated tools applied to industrial production can effectively enhance the surface quality of coating. To improve the processing performance of coated tools, micro abrasive slurry jet (MASJ) polishing technology is first applied to the post-treatment of coated tools. Subsequently, the effects of process parameters on the surface quality and cutting thickness of coating are investigated via single-factor experiments. In the experiment, the best surface roughness is obtained by setting the working pressure to 0.4 MPa, particle size to 3 μm, incidence angle to 30°, and abrasive mass concentration to 100 g/L. Based on the results of the single-factor experiments, combination experiments are designed, and three types of coated tools with different surface qualities and coating thicknesses are obtained. The MASJ process for the post-treatment of coated tools is investigated based on a tool wear experiment and the effects of cutting parameters on the cutting force and workpiece surface quality of three types of cutting tools. The result indicates that MASJ machining can effectively improve the machining performance of coated tools.
Improving Ultrasonic Testing by Using Machine Learning Framework Based on Model Interpretation Strategy
Siqi Shi, Shijie Jin, Donghui Zhang, Jingyu Liao, Dongxin Fu, Li Lin
2023, 36. doi: 10.1186/s10033-023-00960-z
[Abstract](53) [FullText HTML] (34) [PDF 4019KB](0)
Abstract:
Ultrasonic testing (UT) is increasingly combined with machine learning (ML) techniques for intelligently identifying damage. Extracting significant features from UT data is essential for efficient defect characterization. Moreover, the hidden physics behind ML is unexplained, reducing the generalization capability and versatility of ML methods in UT. In this paper, a generally applicable ML framework based on the model interpretation strategy is proposed to improve the detection accuracy and computational efficiency of UT. Firstly, multi-domain features are extracted from the UT signals with signal processing techniques to construct an initial feature space. Subsequently, a feature selection method based on model interpretable strategy (FS-MIS) is innovatively developed by integrating Shapley additive explanation (SHAP), filter method, embedded method and wrapper method. The most effective ML model and the optimal feature subset with better correlation to the target defects are determined self-adaptively. The proposed framework is validated by identifying and locating side-drilled holes (SDHs) with 0.5λ central distance and different depths. An ultrasonic array probe is adopted to acquire FMC datasets from several aluminum alloy specimens containing two SDHs by experiments. The optimal feature subset selected by FS-MIS is set as the input of the chosen ML model to train and predict the times of arrival (ToAs) of the scattered waves emitted by adjacent SDHs. The experimental results demonstrate that the relative errors of the predicted ToAs are all below 3.67% with an average error of 0.25%, significantly improving the time resolution of UT signals. On this basis, the predicted ToAs are assigned to the corresponding original signals for decoupling overlapped pulse-echoes and reconstructing high-resolution FMC datasets. The imaging resolution is enhanced to 0.5λ by implementing the total focusing method (TFM). The relative errors of hole depths and central distance are no more than 0.51% and 3.57%, respectively. Finally, the superior performance of the proposed FS-MIS is validated by comparing it with initial feature space and conventional dimensionality reduction techniques.
Research on Energy Efficiency Characteristics of Mining Shovel Hoisting and Slewing System Driven by Hydraulic-Electric Hybrid System
Xiangyu Wang, Lei Ge, Yunhua Li, Long Quan
2023, 36. doi: 10.1186/s10033-023-00970-x
[Abstract](47) [FullText HTML] (33) [PDF 2912KB](2)
Abstract:
Mining shovel is a crucial piece of equipment for high-efficiency production in open-pit mining and stands as one of the largest energy consumption sources in mining. However, substantial energy waste occurs during the descent of the hoisting system or the deceleration of the slewing platform. To reduce the energy loss, an innovative hydraulic-electric hybrid drive system is proposed, in which a hydraulic pump/motor connected with an accumulator is added to assist the electric motor to drive the hoisting system or slewing platform, recycling kinetic and potential energy. The utilization of the kinetic and potential energy reduces the energy loss and installed power of the mining shovel. Meanwhile, the reliability of the mining shovel pure electric drive system also can be increased. In this paper, the hydraulic-electric hybrid driving principle is introduced, a small-scale testbed is set up to verify the feasibility of the system, and a co-simulation model of the proposed system is established to clarify the system operation and energy characteristics. The test and simulation results show that, by adopting the proposed system, compared with the traditional purely electric driving system, the peak power and energy consumption of the hoisting electric motor are reduced by 36.7% and 29.7%, respectively. Similarly, the slewing electric motor experiences a significant decrease in peak power by 86.9% and a reduction in energy consumption by 59.4%. The proposed system expands the application area of the hydraulic electric hybrid drive system and provides a reference for its application in oversized and super heavy equipment.
Surface Characterization and Tribology Behavior of PMMA Processed by Excimer Laser
Dong Qin, Juan Guo, Ming Liang, Ling Chen, Weimin He
2023, 36. doi: 10.1186/s10033-023-00938-x
[Abstract](50) [FullText HTML] (34) [PDF 5823KB](0)
Abstract:
Polyoxymethylene methacrylate (PMMA) is widely used in ophthalmic biomaterials. Misuse of PMMA in extreme environments is likely to damage the ocular surface and intraocular structures. The surface characterization and tribological behavior of PMMA processed using an excimer laser were investigated in this study by contrasting different lubrication conditions and friction cycles. The results show that the roughness of the material surface increases with laser processing, which changes its physical structure. Under lubrication, the laser-treated PMMA exhibits better hydrophilicity, especially during the use of eye drops. No obvious relationship exists between the laser-processing time and friction behavior. However, the laser treatment may contribute to the formation of friction and wear mechanisms of PMMA materials. Laser-treated PMMA in saline solution exhibits better abrasive resistance by showing a lower wear rate than that in eye drops, although it has a higher friction coefficient. In this study, the different friction stages in laser-treated PMMA were clarified under two lubrication conditions. The wear rates of the laser-treated PMMA were found to decrease with the number of cycles, and the friction coefficient has a similar variation tendency. The wear behavior of the laser-treated PMMA is dominated by the main abrasive wear and secondary transferred film formation. This study provides a theoretical basis for the development and application of ophthalmic biomaterials in complex environments by examining the material surface interface behavior and wear mechanism after laser processing using PMMA as the research matrix.
Nonlinear Control of Magnetically Coupled Rodless Cylinder Position Servo System
Yeming Zhang, Demin Kong, Gonghua Jin, Yan Shi, Maolin Cai, Shuping Li, Baozhan Lv
2023, 36. doi: 10.1186/s10033-023-00971-w
[Abstract](45) [FullText HTML] (35) [PDF 3721KB](1)
Abstract:
Magnetically coupled rodless cylinders are widely used in the coordinate positioning of mechanical arms, electrostatic paintings, and other industrial applications. However, they exhibit strong nonlinear characteristics, which lead to low servo control accuracy. In this study, a mass-flow equation through the valve port was derived to improve the control performance, considering the characteristics of the dynamics and throttle-hole flow. Subsequently, a friction model combining static, viscous, and Coulomb friction with a zero-velocity interval was proposed. In addition, energy and dynamic models were set for the experimental investigation of the magnetically coupled rodless cylinder. A nonlinear mathematical model for the position of the magnetically coupled rodless cylinder was proposed. An incremental PID controller was designed for the magnetically coupled rodless cylinder to control this system, and the PID parameters were adjusted online using RBF neural network. The response results of the PID parameters based on the RBF neural network were compared with those of the traditional incremental PID control, which proved the superiority of the optimization control algorithm of the incremental PID parameters based on the RBF neural network servo control system. The experimental results of this model were compared with the simulation results. The average error between the established model and the actual system was 0.005175054 (m), which was approximately 2.588% of the total travel length, demonstrating the accuracy of the theoretical model.
Construction of Human Digital Twin Model Based on Multimodal Data and Its Application in Locomotion Mode Identification
Ruirui Zhong, Bingtao Hu, Yixiong Feng, Hao Zheng, Zhaoxi Hong, Shanhe Lou, Jianrong Tan
2023, 36. doi: 10.1186/s10033-023-00951-0
[Abstract](50) [FullText HTML] (36) [PDF 4064KB](1)
Abstract:
With the increasing attention to the state and role of people in intelligent manufacturing, there is a strong demand for human-cyber-physical systems (HCPS) that focus on human-robot interaction. The existing intelligent manufacturing system cannot satisfy efficient human-robot collaborative work. However, unlike machines equipped with sensors, human characteristic information is difficult to be perceived and digitized instantly. In view of the high complexity and uncertainty of the human body, this paper proposes a framework for building a human digital twin (HDT) model based on multimodal data and expounds on the key technologies. Data acquisition system is built to dynamically acquire and update the body state data and physiological data of the human body and realize the digital expression of multi-source heterogeneous human body information. A bidirectional long short-term memory and convolutional neural network (BiLSTM-CNN) based network is devised to fuse multimodal human data and extract the spatiotemporal features, and the human locomotion mode identification is taken as an application case. A series of optimization experiments are carried out to improve the performance of the proposed BiLSTM-CNN-based network model. The proposed model is compared with traditional locomotion mode identification models. The experimental results proved the superiority of the HDT framework for human locomotion mode identification.
Pre-compensation of Friction for CNC Machine Tools through Constructing a Nonlinear Model Predictive Scheme
Qunbao Xiao, Min Wan, Xuebin Qin
2023, 36. doi: 10.1186/s10033-023-00946-x
[Abstract](44) [FullText HTML] (36) [PDF 7770KB](3)
Abstract:
Nonlinear friction is a dominant factor affecting the control accuracy of CNC machine tools. This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme. The nonlinear friction-induced tracking error is firstly modeled and then utilized to establish the nonlinear model predictive scheme, which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective. During the optimization procedure, the derivative of compensation signal is constrained to avoid vibration of machine tools. In contrast to other existing approaches, the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter, while finely identifying the parameters related to the pre-sliding phenomenon is not required. As a result, it greatly facilitates the practical applicability. Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%, and reduce the contour errors by more than 50%.
Simulation and Experimental Research on Liquid Spreading in a Wire-Sawn Kerf
Lin Lin, Hui Huang
2023, 36. doi: 10.1186/s10033-023-00969-4
[Abstract](43) [FullText HTML] (33) [PDF 3117KB](2)
Abstract:
The significance of liquids in abrasive wire sawing has been demonstrated in several studies. However, the performance of its spreading behavior is limited by the current development trend, where the wafer has a larger area and the kerf is narrower. Moreover, there are very few studies on the liquid spreading behavior in wire-sawn kerfs. Therefore, a 3D CFD (computational fluid dynamics) model is presented in this paper and used to simulate the liquid spreading behavior in a kerf based on a VOF (volume of fluid) method with a CSF (continuum surface force) model, which is used to simulate multiphase flow, and an empirical correlation for characterizing the liquid dynamic contact angle using UDF (user defined functions). Subsequently, parametric simulations are performed on the kerf area, kerf width, liquid viscosity, liquid surface tension, and liquid velocity at the inlet area of the kerf, and verification experiments are conducted to determine the validity of the simulation model. From the simulation and experimental results, three typical liquid spreading regimes that exhibit different effects on wire sawing in the kerfs are found, and their limiting conditions are identified using non-dimensional analysis. Subsequently, a prediction model is proposed for the liquid spreading regime based on a set of Weber and Capillary numbers. For wire sawing, an increase in the wafer area does not change the liquid spreading regime in the kerf; however, a reduction in the kerf width significantly hinders the liquid spreading behavior. Thereby, the spreading regime can be effectively converted to facilitate wire sawing by adjusting the physical properties and supply conditions of the liquid.
Dynamic Investigations on the Wear Behavior of a 3D Revolute Joint Considering Time-Varying Contact Stiffness: Simulation and Experiment
Li Zhang, Yining Fang, Guanghan Bai, Junyong Tao
2023, 36. doi: 10.1186/s10033-023-00949-8
[Abstract](61) [FullText HTML] (33) [PDF 3498KB](1)
Abstract:
The existence of the relative radial and axial movements of a revolute joint's journal and bearing is widely known. The three-dimensional (3D) revolute joint model considers relative radial and axial clearances; therefore, the freedoms of motion and contact scenarios are more realistic than those of the two-dimensional model. This paper proposes a wear model that integrates the modeling of a 3D revolute clearance joint and the contact force and wear depth calculations. Time-varying contact stiffness is first considered in the contact force model. Also, a cycle-update wear depth calculation strategy is presented. A digital image correlation (DIC) non-contact measurement and a cylindricity test are conducted. The measurement results are compared with the numerical simulation, and the proposed model's correctness and the wear depth calculation strategy are verified. The results show that the wear amount distribution on the bearing's inner surface is uneven in the axial and radial directions due to the journal's stochastic oscillations. The maximum wear depth locates where at the bearing's edges the motion direction of the follower shifts. These findings help to seek the revolute joints' wear-prone parts and enhance their durability and reliability through improved design.
Material Removal Mechanism and Force Modeling in Ultrasonic Vibration-Assisted Micro-Grinding Biological Bone
Jingang Sun, Changhe Li, Zongming Zhou, Bo Liu, Yanbin Zhang, Min Yang, Teng Gao, Mingzheng Liu, Xin Cui, Benkai Li, Runze Li, Yusuf Suleiman Dambatta, Shubham Sharma
2023, 36. doi: 10.1186/s10033-023-00957-8
[Abstract](48) [FullText HTML] (37) [PDF 9830KB](1)
Abstract:
Micro-grinding with a spherical grinding head has been deemed an indispensable method in high-risk surgeries, such as neurosurgery and spine surgery, where bone grinding has long been plagued by the technical bottleneck of mechanical stress-induced crack damage. In response to this challenge, the ultrasound-assisted biological bone micro-grinding novel process with a spherical grinding head has been proposed by researchers. Force modeling is a prerequisite for process parameter determination in orthopedic surgery, and the difficulty in establishing and accurately predicting bone micro-grinding force prediction models is due to the geometric distribution of abrasive grains and the dynamic changes in geometry and kinematics during the cutting process. In addressing these critical needs and technical problems, the shape and protrusion heights of the wear particle of the spherical grinding head were first studied, and the gradual rule of the contact arc length under the action of high-speed rotating ultrasonic vibration was proposed. Second, the mathematical model of the maximum thickness of undeformed chips under ultrasonic vibration of the spherical grinding head was established. Results showed that ultrasonic vibration can reduce the maximum thickness of undeformed chips and increase the range of ductile and bone meal removals, revealing the mechanism of reducing grinding force. Further, the dynamic grinding behavior of different layers of abrasive particles under different instantaneous interaction states was studied. Finally, a prediction model of micro-grinding force was established in accordance with the relationship between grinding force and cutting depth, revealing the mechanism of micro-grinding force transfer under ultrasonic vibration. The theoretical model's average deviations are 10.37% in x-axis direction, 6.85% in y-axis direction, and 7.81% in z-axis direction compared with the experimental results. This study provides theoretical guidance and technical support for clinical bone micro-grinding.
Thermal-Mechanical Effect and Removal Mechanism of Ti-6Al-4V During Laser-Assisted Grinding
Guijian Xiao, Shengwang Zhu, Yi He, Gang Liu, Yuanhe Ni
2023, 36. doi: 10.1186/s10033-023-00939-w
[Abstract](49) [FullText HTML] (34) [PDF 7194KB](0)
Abstract:
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specific strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efficiency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is first proposed. Then, the effects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature field are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked flakes with a “fish scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage.
Mechanism and Method of Testing Fracture Toughness and Impact Absorbed Energy of Ductile Metals by Spherical Indentation Tests
Jianxun Li, Tairui Zhang, Shang Wang, Jirui Cheng, Weiqiang Wang
2023, 36. doi: 10.1186/s10033-023-00913-6
[Abstract](31) [FullText HTML] (26) [PDF 3796KB](0)
Abstract:
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were first investigated through finite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is different from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the difference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modified. The quasi-static fracture toughness determined from the modified CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The effectiveness of the newly proposed method was verified through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.
On Energy Assessment of Titanium Alloys Belt Grinding Involving Abrasive Wear Effects
Mingcong Li, Shudong Zhao, Heng Li, Yun Huang, Lai Zou, Wenxi Wang
2023, 36. doi: 10.1186/s10033-023-00941-2
[Abstract](41) [FullText HTML] (36) [PDF 3417KB](1)
Abstract:
Improved energy utilisation, precision, and quality are critical in the current trend of low-carbon green manufacturing. In this study, three abrasive belts were prepared at various wear stages and characterised quantitatively. The effects of abrasive belt wear on the specific grinding energy partition were investigated by evaluating robotic belt grinding of titanium plates. A specific grinding energy model based on subdivided tangential forces of cutting and sliding was developed for investigating specific energy and energy utilisation coefficient EUC. The surface morphology and Abbott–Firestone curves of the belts were introduced to analyse the experimental findings from the perspective of the micro cutting behaviour. The specific grinding energy increased with abrasive belt wear, especially when the belt was near the end of its life. Moreover, the belt wear could lead to a predominance change of sliding and chip formation energy. The highest EUC was observed in the middle of the belt life because of its retained sharp cutting edge and uniform distribution of the grit protrusion height. This study provides guidance for balancing the energy consumption and energy utilization efficiency of belt grinding.
Evaluation of Surface Roughness of Aluminum Alloy in Burnishing Process Based on Chaos Theory
Zhipeng Yuan, Zhenyu Zhou, Zhiguo Jiang, Zeyu Zhao, Cong Ding, Zhongyu Piao
2023, 36: 2. doi: 10.1186/s10033-022-00828-8
[Abstract](134) [FullText HTML] (91) [PDF 2788KB](10)
Abstract:
Burnishing experiments with different burnishing parameters were performed on a computer numerical control milling machine to characterize the surface roughness of an aluminum alloy during burnishing. The chaos theory was employed to investigate the nonlinear features of the burnishing system. The experimental results show that the power spectrum is broadband and continuous, and the Lyapunov exponent λ is positive, proving that burnishing has chaotic characteristics. The chaotic characteristic parameter, the correlation dimension D, is sensitive to the time behavior of the system and is used to establish the corresponding relationship with the surface roughness. The correlation dimension was the largest, when the surface roughness was the smallest. Furthermore, when the correlation dimension curve decreases, the roughness curve increases. The correlation dimension and surface roughness exhibit opposite variation trends. The higher the correlation dimension, the lower the surface roughness. The surface roughness of the aluminum alloy can be characterized online by calculating the correlation dimension during burnishing.
Experimental Research on the Surface Quality of Milling Contour Bevel Gears
Mingyang Wu, Jianyu Zhang, Chunjie Ma, Yali Zhang, Yaonan Cheng
2023, 36: 4. doi: 10.1186/s10033-022-00825-x
[Abstract](116) [FullText HTML] (99) [PDF 3109KB](2)
Abstract:
Contour bevel gears have the advantages of high coincidence, low noise and large bearing capacity, which are widely used in automobile manufacturing, shipbuilding and construction machinery. However, when the surface quality is poor, the effective contact area between the gear mating surfaces decreases, affecting the stability of the fit and thus the transmission accuracy, so it is of great significance to optimize the surface quality of the contour bevel gear. This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method, and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece. Then, the surface defects on the machined surface of the workpiece are studied by SEM, and the causes of the surface defects are analyzed by EDS. After that, XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis, and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment. The research results are of great significance for improving the machining accuracy of contour bevel gears, reducing friction losses and improving transmission efficiency.
Surface Integrity of Inconel 738LC Parts Manufactured by Selective Laser Melting Followed by High-speed Milling
Guanhui Ren, Sai Guo, Bi Zhang
2023, 36: 5. doi: 10.1186/s10033-022-00827-9
[Abstract](99) [FullText HTML] (96) [PDF 3614KB](0)
Abstract:
This study is concerned with the surface integrity of Inconel 738LC parts manufactured by selective laser melting (SLM) followed by high-speed milling (HSM). In the investigation process of surface integrity, the study employs ultradepth three-dimensional microscopy, laser scanning confocal microscopy, scanning electron microscopy, electron backscatter diffractometry, and energy dispersive spectroscopy to characterize the evolution of material microstructure, work hardening, residual stress coupling, and anisotropic effect of the building direction on surface integrity of the samples. The results show that SLM/HSM hybrid manufacturing can be an effective method to obtain better surface quality with a thinner machining metamorphic layer. High-speed machining is adopted to reduce cutting force and suppress machining heat, which is an effective way to produce better surface mechanical properties during the SLM/HSM hybrid manufacturing process. In general, high-speed milling of the SLM-built Inconel 738LC samples offers better surface integrity, compared to simplex additive manufacturing or casting.
Terahertz Spectroscopic Characterization and Thickness Evaluation of Internal Delamination Defects in GFRP Composites
Walter Nsengiyumva, Shuncong Zhong, Manting Luo, Bing Wang
2023, 36: 6. doi: 10.1186/s10033-022-00829-7
[Abstract](99) [FullText HTML] (83) [PDF 2959KB](0)
Abstract:
The use of terahertz time-domain spectroscopy (THz-TDS) for the nondestructive testing and evaluation (NDT & E) of materials and structural systems has attracted significant attention over the past two decades due to its superior spatial resolution and capabilities of detecting and characterizing defects and structural damage in non-conducting materials. In this study, the THz-TDS system is used to detect, localize and evaluate hidden multi-delamination defects (i.e., a three-level multi-delamination system) in multilayered GFRP composite laminates. To obtain accurate results, a wavelet shrinkage de-noising algorithm is used to remove the noise from the measured time-of-flight (TOF) signals. The thickness and location of each delamination defect in the z-direction (i.e., through-the-thickness direction) are calculated from the de-noised TOF signals considering the interaction between the pulsed THz waves and the different interfaces in the GFRP composite laminates. A comparison between the actual and the measured thickness values of the delamination defects before and after the wavelet shrinkage denoising process indicates that the latter provides better results with less than 3.712% relative error, while the relative error of the non-de-noised signals reaches 16.388%. Also, the power and absorbance levels of the THz waves at every interface with different refractive indices in the GFRP composite laminates are evaluated based on analytical and experimental approaches. The present study provides an adequate theoretical analysis that could help NDT & E specialists to estimate the maximum thickness of GFRP composite materials and/or structures with different interfaces that can be evaluated by the THz-TDS. Also, the accuracy of the obtained results highlights the capabilities of the THz-TDS for the NDT & E of multilayered GFRP composite laminates.
Denoising Fault-Aware Wavelet Network: A Signal Processing Informed Neural Network for Fault Diagnosis
Zuogang Shang, Zhibin Zhao, Ruqiang Yan
2023, 36: 9. doi: 10.1186/s10033-023-00838-0
[Abstract](98) [FullText HTML] (86) [PDF 2696KB](2)
Abstract:
Deep learning (DL) is progressively popular as a viable alternative to traditional signal processing (SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network (SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network (DFAWNet) is developed, which consists of fused wavelet convolution (FWConv), dynamic hard thresholding (DHT), index-based soft filtering (ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically; DHT dynamically eliminates noise-related components via point-wise hard thresholding; inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It's worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github.com/albertszg/DFAWnet.
Progressive Failure Analysis of Composite/Aluminum Riveted Joints Subjected to Pull-Through Loading
Yuxing Yang, Yongjie Bao, Xueshu Liu, Jinlong Wang, Fengming Du
2023, 36: 10. doi: 10.1186/s10033-023-00839-z
[Abstract](94) [FullText HTML] (90) [PDF 3066KB](1)
Abstract:
Out-of-plane mechanical properties of the riveted joints restrict the performance of the wing box assembly of airplane. It is necessary to investigate the pull-through performance of the composite/metal riveted joints in order to guide the riveting design and ensure the safety of the wing box assembly. The progressive failure mechanism of composite/aluminum riveted joint subjected to pull-through loading was investigated by experiments and finite element method. A progressive damage model based on the Hashin-type criteria and zero-thickness cohesive zone method was developed by VUMAT subroutine, which was validated by both open-hole tensile test and three-point bending test. Predicted load-displacement response, failure modes and damage propagation were analysed and compared with the results of the pull-through tests. There are 4 obvious characteristic stages on the load-displacement curve of the pull-through test and that of the finite element model: first load take-up stage, damage stage, second load take-up stage and failure stage. Relative error of stiffness, first load peak and second load peak between finite element method and experiments were 8.1%, − 3.3% and 10.6%, respectively. It was found that the specimen was mainly broken by rivet-penetration fracture and delamination of plies of the composite laminate. And the material within the scope of the rivet head is more dangerous with more serious tensile damages than other regions, especially for 90° plies. This study proposes a numerical method for damage prediction and reveals the progressive failure mechanism of the hybrid material riveted joints subjected to the pull-through loading.
Application of Nonlinear Lamb Wave Mixing Method for Residual Stress Measurement in Metal Plate
Jingpin Jiao, Li Li, Xiang Gao, Quan Cheng, Cunfu He, Bin Wu
2023, 36: 12. doi: 10.1186/s10033-023-00832-6
[Abstract](107) [FullText HTML] (91) [PDF 4075KB](0)
Abstract:
Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements; however, it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimental system. This paper presents a feasibility study on the measurement of residual stress in a metal plate using a nonlinear Lamb wave-mixing technique. The resonant conditions for two Lamb waves to generate a mixing frequency wave are obtained via theoretical analysis. Finite element simulations are performed to investigate the nonlinear interactions between the two Lamb waves. Results show that two incident A0 waves interact in regions of material nonlinearity and generate a rightward S0 wave at the sum frequency. Residual stress measurement experiments are conducted on steel plate specimens using the collinear Lamb wave-mixing technique. By setting different delays for two transmitters, the generated sum-frequency component at different spatial locations is measured. Experimental results show that the spatial distribution of the amplitude of the sum-frequency component agrees well with the spatial distribution of the residual stress measured using X-rays. The proposed collinear Lamb wave-mixing method is effective for measuring the distribution of residual stress in metal plates.
Stress-Induced Deformation of Thin Copper Substrate in Double-Sided Lapping
Jiang Guo, Zengxu He, Bo Pan, Bin Wang, Qian Bai, Jinxing Kong, Renke Kang
2023, 36: 15. doi: 10.1186/s10033-022-00824-y
[Abstract](97) [FullText HTML] (82) [PDF 2387KB](1)
Abstract:
Double-sided lapping is an precision machining method capable of obtaining high-precision surface. However, during the lapping process of thin pure copper substrate, the workpiece will be warped due to the influence of residual stress, including the machining stress and initial residual stress, which will deteriorate the flatness of the workpiece and ultimately affect the performance of components. In this study, finite element method (FEM) was adopted to study the effect of residual stress-related on the deformation of pure copper substrate during double-sided lapping. Considering the initial residual stress of the workpiece, the stress caused by the lapping and their distribution characteristics, a prediction model was proposed for simulating workpiece machining deformation in lapping process by measuring the material removal rate of the upper and lower surfaces of the workpiece under the corresponding parameters. The results showed that the primary cause of the warping deformation of the workpiece in the double-sided lapping is the redistribution of initial residual stress caused by uneven material removal on the both surfaces. The finite element simulation results were in good agreement with the experimental results.
Local Buckling-Induced Forming Method to Produce Metal Bellows
Tianyin Zhang, Dongqing Li, Tianjiao Xu, Yongfeng Sui, Xianhong Han
2023, 36: 16. doi: 10.1186/s10033-023-00852-2
[Abstract](105) [FullText HTML] (90) [PDF 3472KB](0)
Abstract:
A novel buckling-induced forming method is proposed to produce metal bellows. The tube billet is firstly treated by local heating and cooling, and the axial loading is applied on both ends of the tube, then the buckling occurs at the designated position and forms a convolution. In this paper, a forming apparatus is designed and developed to produce both discontinuous and continuous bellows of 304 stainless steel, and their characteristics are discussed respectively. Furthermore, the influences of process parameters and geometric parameters on the final convolution profile are deeply studied based on FEM analysis. The results suggest that the steel bellows fabricated by the presented buckling-induced forming method have a uniform shape and no obvious reduction of wall thickness. Meanwhile, the forming force required in the process is quite small.
Product Specification Analysis for Modular Product Design Using Big Sales Data
Jian Zhang, Bingbing Li, Qingjin Peng, Peihua Gu
2023, 36: 17. doi: 10.1186/s10033-023-00841-5
[Abstract](113) [FullText HTML] (86) [PDF 2664KB](0)
Abstract:
Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers' requirements of product specification combinations. To better facilitate decision-making of modular product design, correlations among specifications and components originated from customers' conscious and subconscious preferences can be investigated by using big data on product sales. This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data. The correlations of the product specifications are determined by analyzing the collected product sales data. By building the relations between the product components and specifications, a matrix for measuring the correlation among product components is formed for component clustering. Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster. A case study of electric vehicles illustrates the application of the proposed method.
Condition-based Maintenance Optimization for Gamma Deteriorating Systems under Performance-based Contracting
Xi Zhu, Liang Wen, Juan Li, Mingchang Song, Qiwei Hu
2023, 36: 18. doi: 10.1186/s10033-023-00849-x
[Abstract](116) [FullText HTML] (87) [PDF 3204KB](0)
Abstract:
With the further development of service-oriented, performance-based contracting (PBC) has been widely adopted in industry and manufacturing. However, maintenance optimization problems under PBC have not received enough attention. To further extend the scope of PBC's application in the field of maintenance optimization, we investigate the condition-based maintenance (CBM) optimization for gamma deteriorating systems under PBC. Considering the repairable single-component system subject to the gamma degradation process, this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC. In the proposed CBM model, the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate. Then, a particle swarm algorithm (PSO) and related solution procedure are presented to solve the multiple decision variables in our proposed model. In the end, a numerical example is provided so as to demonstrate the superiority of the presented model. By comparing the proposed policy with the conventional ones, the superiority of our proposed policy is proved, which can bring more profits to providers and improve performance. Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy. A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.
Influence of Cavitation on Unsteady Vortical Flows in a Side Channel Pump
Yefang Wang, Fan Zhang, Shouqi Yuan, Ke Chen, Feng Hong, Desmond Appiah
2023, 36: 25. doi: 10.1186/s10033-023-00842-4
[Abstract](92) [FullText HTML] (87) [PDF 13613KB](1)
Abstract:
Previous investigation on side channel pump mainly concentrates on parameter optimization and internal unsteady vortical flows. However, cavitation is prone to occur in a side channel pump, which is a challenging issue in promoting performance. In the present study, the cavitating flow is investigated numerically by the turbulence model of SAS combined with the Zwart cavitation model. The vapors inside the side channel pump firstly occur in the impeller passage near the inlet and then spread gradually to the downstream passages with the decrease of NPSHa. Moreover, a strong adverse pressure gradient is presented at the end of the cavity closure region, which leads to cavity shedding from the wall. The small scaled vortices in each passage reduce significantly and gather into larger vortices due to the cavitation. Comparing the three terms of vorticity transport equation with the vapor volume fraction and vorticity distributions, it is found that the stretching term is dominant and responsible for the vorticity production and evolution in cavitating flows. In addition, the magnitudes of the stretching term decrease once the cavitation occurs, while the values of dilatation are high in the cavity region and increase with the decreasing NPSHa. Even though the magnitude of the baroclinic torque term is smaller than vortex stretching and dilatation terms, it is important for the vorticity production along the cavity surface and near the cavity closure region. The pressure fluctuations in the impeller and side channel tend to be stronger due to the cavitation. The primary frequency of monitor points in the impeller is 24.94 Hz and in the side channel is 598.05 Hz. They are quite corresponding to the shaft frequency of 25 Hz (fshaft = 1/n = 25 Hz) and the blade frequency of 600 Hz (fblade = Z/n =600 Hz) respectively. This study complements the investigation on cavitation in the side channel pump, which could provide the theoretical foundation for further optimization of performance.
Micro-Sized Pinhole Inspection with Segmented Time Reversal and High-Order Modes Cluster Lamb Waves Based on EMATs
Jinjie Zhou, Yang Hu, Xiang Li, Yang Zheng, Sanhu Yang, Yao Liu
2023, 36: 27. doi: 10.1186/s10033-023-00853-1
[Abstract](92) [FullText HTML] (91) [PDF 3125KB](1)
Abstract:
Pinhole corrosion is difficult to discover through conventional ultrasonic guided waves inspection, particularly for micro-sized pinholes less than 1 mm in diameter. This study proposes a new micro-sized pinhole inspection method based on segmented time reversal (STR) and high-order modes cluster (HOMC) Lamb waves. First, the principle of defect echo enhancement using STR is introduced. Conventional and STR inspection experiments were conducted on aluminum plates with a thickness of 3 mm and defects with different diameters and depths. The parameters of the segment window are discussed in detail. The results indicate that the proposed method had an amplitude four times larger than of conventional ultrasonic guided waves inspection method for pinhole defect detection and could detect micro-sized pinhole defects as small as 0.5 mm in diameter and 0.5 mm in depth. Moreover, the segment window location and width (5−10 times width of the conventional excitation signal) did not affect the detection sensitivity. The combination of low-power and STR is more conducive to detection in different environments, indicating the robustness of the proposed method. Compared with conventional ultrasonic guided wave inspection methods, the proposed method can detect much smaller defect echoes usually obscured by noise that are difficult to detect with a lower excitation power and thus this study would be a good reference for pinhole defect detection.
Numerical Visualization of Grease Flow in a Gearbox
Hua Liu, Florian Dangl, Thomas Lohner, Karsten Stahl
2023, 36: 28. doi: 10.1186/s10033-023-00831-7
[Abstract](322) [FullText HTML] (253) [PDF 3936KB](5)
Abstract:
Lubricating greases are widely used in e.g. open gear drives and gearboxes with difficult sealing conditions. The efficiency and heat balance of grease-lubricated gearboxes depend strongly on the lubrication mechanisms channeling and circulating, for which the grease flow is causal. The computational fluid dynamics opens up the possibility to visualize and understand the grease flow in gearboxes in more detail. In this study, a single-stage gearbox lubricated with an NLGI 1-2 grease was modeled by the finite-volume method to numerically investigate the fluid flow. Results show that the rotating gears influence the grease sump only locally around the gears. For a low grease fill volume, the rotation of the gears is widely separated from the grease sump. For a high grease fill volume, a pronounced gear-grease interaction results in a circulating grease flow around the gears. The simulated grease distributions show good accordance with high-speed camera recordings.
Multi-Objective Optimization of Fused Deposition Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi Method
Kapil Kumar, Hari Singh
2023, 36: 30. doi: 10.1186/s10033-023-00847-z
[Abstract](97) [FullText HTML] (90) [PDF 2176KB](2)
Abstract:
The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the on-demand necessity to perform surgery during space missions. Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing. Among all 3D printing techniques, fused deposition modelling (FDM) is a low-cost and more rapid printing technique. This article proposes the fabrication of surgical instruments, namely, forceps and hemostat using the fused deposition modeling (FDM) process. Excellent mechanical properties are the only indicator to judge the quality of the functional parts. The mechanical properties of FDM-processed parts depend on various process parameters. These parameters are layer height, infill pattern, top/bottom pattern, number of top/bottom layers, infill density, flow, number of shells, printing temperature, build plate temperature, printing speed, and fan speed. Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid (PLA) parts printed by FDM. The experiments have performed through Taguchi's L27 orthogonal array (OA). Variance analysis (ANOVA) ascertains the significance of the process parameters and their percent contributions to the evaluation indexes. Finally, as a multi-objective optimization technique, grey relational analysis (GRA) obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties. Scanning electron microscopy (SEM) examines the types of defects and strong bonding between rasters. The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength (42.6 MPa) and modulus of elasticity (3274 MPa).
Local Stress Measurement in Thin Aluminum Plates based on Zero-Group-Velocity Lamb mode
Weiming Xuan, Maodan Yuan, Xuanrong Ji, Wenjin Xu, Yan Chen, Lvming Zeng
2023, 36: 31. doi: 10.1186/s10033-023-00855-z
[Abstract](113) [FullText HTML] (103) [PDF 2218KB](0)
Abstract:
The stress state is critical to the reliability of structures, but existing ultrasonic methods are challenging to measure local stress. In this paper, zero-group-velocity (ZGV) Lamb mode was proposed to measure the local stress field in thin aluminum plates. The Lamb wave's dispersive characteristics under initial stress were analyzed based on the Floquet-Bloch theory with Murnaghan hyperelastic material model. The obtained dispersion curves show that higher-order Lamb wave modes near the cut-off frequencies are sensitive to applied stress across the plate, indicating that the S1-ZGV mode has a rather high sensitivity to stress. Similar to conventional ultrasonic stress measurement, it is found that the frequency of the S1-ZGV mode changes near-linearly with the amplitude of applied stress. Numerical experiments were conducted to illustrate the feasibility of local stress measurement in a thin aluminum plate based on the S1-ZGV mode. Single and multiple localized stress fields were evaluated with the S1-ZGV method, and reconstructed results matched well with actual stress fields, proving that the ZGV Lamb wave method is a sensitive stress measurement technique in thin plates.
Investigation of the Laser Powder Bed Fusion Process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy
Changchun Zhang, Tingting Liu, Wenhe Liao, Huiliang Wei, Ling Zhang
2023, 36: 32. doi: 10.1186/s10033-023-00863-z
[Abstract](100) [FullText HTML] (83) [PDF 7727KB](0)
Abstract:
Laser powder bed fusion (LPBF) is an advanced manufacturing technology; however, inappropriate LPBF process parameters may cause printing defects in materials. In the present work, the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach. Subsequently, heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model, and the defect formation mechanisms in the as-fabricated alloy were discussed. The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W, with scanning speed of 1250 mm/s. The LPBF process was divided into a laser irradiation stage, a spreading flow stage, and a solidification stage. The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates. The findings of this research can provide valuable support for printing defect-free metal components.
DADOS: A Cloud-based Data-driven Design Optimization System
Xueguan Song, Shuo Wang, Yonggang Zhao, Yin Liu, Kunpeng Li
2023, 36: 34. doi: 10.1186/s10033-023-00857-x
[Abstract](109) [FullText HTML] (99) [PDF 2663KB](0)
Abstract:
This paper presents a cloud-based data-driven design optimization system, named DADOS, to help engineers and researchers improve a design or product easily and efficiently. DADOS has nearly 30 key algorithms, including the design of experiments, surrogate models, model validation and selection, prediction, optimization, and sensitivity analysis. Moreover, it also includes an exclusive ensemble surrogate modeling technique, the extended hybrid adaptive function, which can make use of the advantages of each surrogate and eliminate the effort of selecting the appropriate individual surrogate. To improve ease of use, DADOS provides a user-friendly graphical user interface and employed flow-based programming so that users can conduct design optimization just by dragging, dropping, and connecting algorithm blocks into a workflow instead of writing massive code. In addition, DADOS allows users to visualize the results to gain more insights into the design problems, allows multi-person collaborating on a project at the same time, and supports multi-disciplinary optimization. This paper also details the architecture and the user interface of DADOS. Two examples were employed to demonstrate how to use DADOS to conduct data-driven design optimization. Since DADOS is a cloud-based system, anyone can access DADOS at www.dados.com.cn using their web browser without the need for installation or powerful hardware.
Crack Fault Diagnosis and Location Method for a Dual-Disk Hollow Shaft Rotor System Based on the Radial Basis Function Network and Pattern Recognition Neural Network
Yuhong Jin, Lei Hou, Zhenyong Lu, Yushu Chen
2023, 36: 35. doi: 10.1186/s10033-023-00856-y
[Abstract](107) [FullText HTML] (81) [PDF 4992KB](0)
Abstract:
The crack fault is one of the most common faults in the rotor system, and researchers have paid close attention to its fault diagnosis. However, most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals. In this paper, a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function (RBF) network and Pattern recognition neural network (PRNN) is presented. Firstly, a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method, where the crack's periodic opening and closing pattern and different degrees of crack depth are considered. Then, the dynamic response is obtained by the harmonic balance method. By adjusting the crack parameters, the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots. The analysis results show that the first critical speed, first subcritical speed, first critical speed amplitude, and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis. Based on this, the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input. Test results show that the proposed method has high fault diagnosis accuracy. This research proposes a crack detection method adequate for the hollow shaft rotor system, where the crack depth and position are both unknown.
Time-frequency Feature Extraction Method of the Multi-Source Shock Signal Based on Improved VMD and Bilateral Adaptive Laplace Wavelet
Nanyang Zhao, Jinjie Zhang, Zhiwei Mao, Zhinong Jiang, He Li
2023, 36: 36. doi: 10.1186/s10033-023-00859-9
[Abstract](137) [FullText HTML] (106) [PDF 4131KB](2)
Abstract:
Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery. Therefore, it is difficult to extract, analyze, and diagnose mechanical fault features. To accurately extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery, a study on the time-frequency feature extraction method of multi-source shock signals is conducted. Combining the characteristics of reciprocating mechanical vibration signals, a targeted optimization method considering the variational modal decomposition (VMD) mode number and second penalty factor is proposed, which completed the adaptive decomposition of coupled signals. Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals, a new bilateral adaptive Laplace wavelet (BALW) is established. A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony search (HS) method. A multi-source shock simulation signal is established, and actual data on the valve fault are obtained through diesel engine fault experiments. The fault recognition rate of the intake and exhaust valve clearance is above 90% and the extraction accuracy of the shock start position is improved by 10°.
Cooling and Crack Suppression of Bone Material Drilling Based on Microtextured Bit Modeled on Dung Beetle
Yunsong Lian, Xiande Chen, Chaoping Xie, Yangyang Long, Fengtian Lin, Wei Zhou, Xuyang Chu
2023, 36: 37. doi: 10.1186/s10033-023-00858-w
[Abstract](97) [FullText HTML] (81) [PDF 2708KB](0)
Abstract:
In recent years, the number of patients with orthopedic diseases such as cervical spondylosis has increased, resulting in an increase in the demand for orthopedic surgery. However, thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery. For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death, easy to produce the problem such as crack cause secondary damage effects to restore, in this paper, a bionic drill was designed based on the micro-structure of the dung beetle's head and back. The microstructure configuration parameters were optimized by numerical analysis, and making use of the optical fiber laser marking machine preparation of bionic bit; through drilling test, the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology, and the cooling mechanism and crack suppression strategy were studied. The experimental results show that when the speed is 60 m/min, the cooling effects of the bionic bit T1 and T2 are 15.31% and 19.78%, respectively, and both kinds of bits show obvious crack suppression effect. The research in this paper provides a new idea for precision and efficient machining of bone materials, and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.
Investigation of Experimental Devices for Finger Active and Passive Tactile Friction Analysis
Xue Zhou, Marc A. Masen, Jiliang Mo, Xinyu Shi, Yaosheng He, Zhongmin Jin
2023, 36: 38. doi: 10.1186/s10033-023-00854-0
[Abstract](114) [FullText HTML] (110) [PDF 2764KB](0)
Abstract:
Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects. In this process, people use their exploration style with different conditions, such as contact load, sliding speed, sliding direction, and angle of orientation between fingers and object surface consciously or unconsciously. This work addressed interlaboratory experimental devices for finger active and passive tactile friction analysis, showing two types of finger movement. In active sliding experiment, the participant slid their finger freely against the object surface, requiring the subject to control the motion conditions themselves. For passive sliding experiments, these motion conditions were adjusted by the device. Several analysis parameters, such as contact force, vibration acceleration signals, vibration magnitude, and fingerprint deformation were recorded simultaneously. Noticeable friction differences were observed when comparing active sliding and passive sliding. For passive sliding, stick-slip behavior occurred when sliding in the distal direction, evidenced by observing the friction force and the related deformation of the fingerprint ridges. The employed devices showed good repeatability and high reliability, which enriched the design of the experimental platform and provided guidance to the standardization research in the field of tactile friction.
A Prediction Model of Effective Thermal Conductivity for Metal Powder Bed in Additive Manufacturing
Yizhen Zhao, Hang Zhang, Jianglong Cai, Shaokun Ji, Dichen Li
2023, 36: 41. doi: 10.1186/s10033-023-00840-6
[Abstract](103) [FullText HTML] (81) [PDF 4278KB](0)
Abstract:
In current research, many researchers propose analytical expressions for calculating the packing structure of spherical particles such as DN Model, Compact Model and NLS criterion et al. However, there is still a question that has not been well explained yet. That is: What is the core factors affecting the thermal conductivity of particles? In this paper, based on the coupled discrete element-finite difference (DE-FD) method and spherical aluminum powder, the relationship between the parameters and the thermal conductivity of the powder (ETCp) is studied. It is found that the key factor that can described the change trend of ETCp more accurately is not the materials of the powder but the average contact area between particles (aave) which also have a close nonlinear relationship with the average particle size d50. Based on this results, the expression for calculating the ETCp of the sphere metal powder is successfully reduced to only one main parameter d50 and an efficient calculation model is proposed which can applicate both in room and high temperature and the corresponding error is less than 20.9% in room temperature. Therefore, in this study, based on the core factors analyzation, a fast calculation model of ETCp is proposed, which has a certain guiding significance in the field of thermal field simulation.
Spatial Expression of Assembly Geometric Errors for Multi-axis Machine Tool Based on Kinematic Jacobian-Torsor Model
Ang Tian, Shun Liu, Kun Chen, Wei Mo, Sun Jin
2023, 36: 44. doi: 10.1186/s10033-023-00870-0
[Abstract](130) [FullText HTML] (113) [PDF 3402KB](3)
Abstract:
Assembly geometric error as a part of the machine tool system errors has a significant influence on the machining accuracy of the multi-axis machine tool. And it cannot be eliminated due to the error propagation of components in the assembly process, which is generally non-uniformly distributed in the whole working space. A comprehensive expression model for assembly geometric error is greatly helpful for machining quality control of machine tools to meet the demand for machining accuracy in practice. However, the expression ranges based on the standard quasi-static expression model for assembly geometric errors are far less than those needed in the whole working space of the multi-axis machine tool. To address this issue, a modeling methodology based on the Jacobian-Torsor model is proposed to describe the spatially distributed geometric errors. Firstly, an improved kinematic Jacobian-Torsor model is developed to describe the relative movements such as translation and rotation motion between assembly bodies, respectively. Furthermore, based on the proposed kinematic Jacobian-Torsor model, a spatial expression of geometric errors for the multi-axis machine tool is given. And simulation and experimental verification are taken with the investigation of the spatial distribution of geometric errors on five four-axis machine tools. The results validate the effectiveness of the proposed kinematic Jacobian-Torsor model in dealing with the spatial expression of assembly geometric errors.
Microstructure, Properties and Crack Suppression Mechanism of High-speed Steel Fabricated by Selective Laser Melting at Different Process Parameters
Wenbin Ji, Chuncheng Liu, Shijie Dai, Riqing Deng
2023, 36: 46. doi: 10.1186/s10033-023-00877-7
[Abstract](138) [FullText HTML] (109) [PDF 3801KB](2)
Abstract:
To enrich material types applied to additive manufacturing and enlarge application scope of additive manufacturing in conformal cooling tools, M2 high-speed steel specimens were fabricated by selective laser melting (SLM). Effects of SLM parameters on the microstructure and mechanical properties of M2 high-speed steel were investigated. The results showed that substrate temperature and energy density had significant influence on the densification process of materials and defects control. Models to evaluate the effect of substrate temperature and energy density on hardness were studied. The optimized process parameters, laser power, scan speed, scan distance, and substrate temperature, for fabricated M2 are 220 W, 960 mm/s, 0.06 mm, and 200 ℃, respectively. Based on this, the hardness and tensile strength reached 60 HRC and 1000 MPa, respectively. Interlaminar crack formation and suppression mechanism and the relationship between temperature gradient and thermal stress were illustrated. The inhibition effect of substrate temperature on the cracks generated by residual stresses was also explained. AM showed great application potential in the field of special conformal cooling cutting tool preparation.
Influence of Non-uniform Parameter of Bolt Joint on Complexity of Frequency Characteristics of Cylindrical Shell
Qiansheng Tang, Houxin She, Chaofeng Li, Bangchun Wen
2023, 36: 49. doi: 10.1186/s10033-023-00866-w
[Abstract](106) [FullText HTML] (97) [PDF 3676KB](0)
Abstract:
Bolt connection is one of the main fixing methods of cylindrical shell structures. A typical bolted connection model is considered as a tuned system. However, in the actual working conditions, due to the manufacturing error, installation error and uneven materials of bolts, there are always random errors between different bolts. To investigate the influence of non-uniform parameters of bolt joint, including the stiffness and the distribution position, on frequency complexity characteristics of cylindrical shell through a statistical method is the main aim of this paper. The bolted joints considered here were simplified as a series of springs with random features. The vibration equation of the bolted joined cylindrical shell was derived based on Sanders' thin shell theory. The Monte Carlo simulation and statistical theory were applied to the statistical analysis of mode characteristics of the system. First, the frequency and mode shape of the tuned system were investigated and compared with FEM. Then, the effect of the random distribution and the random constraint stiffness of the bolts on the frequency and mode shape were studied. And the statistical analysis on the natural frequencies was evaluated for different mistuned levels. And some special cases were presented to help understand the effect of random mistuning. This research introduces random theory into the modeling of bolted joints and proposes a reference result to interpret the complexity of the modal characteristics of cylindrical shells with non-uniform parameters of bolt joints.
Gear Pitting Measurement by Multi-Scale Splicing Attention U-Net
Yi Qin, Dejun Xi, Weiwei Chen, Yi Wang
2023, 36: 50. doi: 10.1186/s10033-023-00874-w
[Abstract](100) [FullText HTML] (89) [PDF 3086KB](1)
Abstract:
The judgment of gear failure is based on the pitting area ratio of gear. Traditional gear pitting calculation method mainly rely on manual visual inspection. This method is greatly affected by human factors, and is greatly affected by the working experience, training degree and fatigue degree of the detection personnel, so the detection results may be biased. The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine, and has high detection accuracy. To improve the measurement accuracy of gear pitting, a novel multi-scale splicing attention U-Net (MSSA U-Net) is explored in this study. An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information. Then, an attention module is applied to select the key features of the splicing feature map. Given that MSSA U-Net adequately uses multi-scale semantic features, it has better segmentation performance on irregular small objects than U-Net and attention U-Net. On the basis of the designed visual detection platform and MSSA U-Net, a methodology for measuring the area ratio of gear pitting is proposed. With three datasets, experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability. Therefore, the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.
Time Synchronous Averaging Based on Cross-power Spectrum
Ling Wang, Minghui Hu, Bo Ma, Zhinong Jiang
2023, 36: 51. doi: 10.1186/s10033-023-00867-9
[Abstract](118) [FullText HTML] (106) [PDF 2588KB](2)
Abstract:
Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery. Time synchronous averaging is an effective and convenient technique for extracting those components. However, the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized. This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem. With this approach, phase detection and compensation eliminate all segments' phase differences, which enables the segments to be well synchronized. The effectiveness of the proposed method is validated by numerical and experimental signals.
Experimental Investigation of Material Removal in Elliptical Vibration Cutting of Cortical Bone
Wei Bai, Yuhao Zhai, Jiaqi Zhao, Guangchao Han, Linzheng Ye, Xijing Zhu, Liming Shu, Dong Wang
2023, 36: 52. doi: 10.1186/s10033-023-00879-5
[Abstract](118) [FullText HTML] (104) [PDF 2020KB](1)
Abstract:
To benefit tissue removal and postoperative rehabilitation, increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy. A novel elliptical vibration cutting (EVC) has been introduced for bone cutting compared with conventional cutting (CC) in this paper. With the assistance of high-speed microscope imaging and the dynamometer, the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively, which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process. It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction. These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
Experimental Study on Titanium Alloy Cutting Property and Wear Mechanism with Circular-arc Milling Cutters
Tao Chen, Jiaqiang Liu, Gang Liu, Hui Xiao, Chunhui Li, Xianli Liu
2023, 36: 57. doi: 10.1186/s10033-023-00887-5
[Abstract](32) [FullText HTML] (29) [PDF 2756KB](0)
Abstract:
Titanium alloy has been applied in the field of aerospace manufacturing for its high specific strength and hardness. Nonetheless, these properties also cause general problems in the machining, such as processing inefficiency, serious wear, poor workpiece face quality, etc. Aiming at the above problems, this paper carried out a comparative experimental study on titanium alloy milling based on the CAMC and BEMC. The variation law of cutting force and wear morphology of the two tools were obtained, and the wear mechanism and the effect of wear on machining quality were analyzed. The conclusion is that in contrast with BEMC, under the action of cutting thickness thinning mechanism, the force of CAMC was less, and its fluctuation was more stable. The flank wear was uniform and near the cutting edge, and the wear rate was slower. In the early period, the wear mechanism of CAMC was mainly adhesion. Gradually, oxidative wear also occurred with milling. Furthermore, the surface residual height of CAMC was lower. There is no obvious peak and trough accompanied by fewer surface defects.
Robust Damage Detection and Localization Under Complex Environmental Conditions Using Singular Value Decomposition-based Feature Extraction and One-dimensional Convolutional Neural Network
Shengkang Zong, Sheng Wang, Zhitao Luo, Xinkai Wu, Hui Zhang, Zhonghua Ni
2023, 36: 61. doi: 10.1186/s10033-023-00889-3
[Abstract](29) [FullText HTML] (27) [PDF 3051KB](0)
Abstract:
Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions (EOC), which are inevitable in the normal inspection of civil and mechanical structures. This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network (1D-CNN). After singular value decomposition-based feature extraction processing, a temporal robust damage index (TRDI) is extracted, and the effect of EOCs is well removed. Hence, even for the signals with a very large temperature-varying range and low signal-to-noise ratios (SNRs), the final damage detection and localization accuracy retain perfect 100%. Verifications are conducted on two different experimental datasets. The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises, and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃ to 60℃. It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly, showing great potential for application in complex and unknown EOC.
Spacecraft Pose Estimation Based on Different Camera Models
Lidong Mo, Naiming Qi, Zhenqing Zhao
2023, 36: 63. doi: 10.1186/s10033-023-00884-8
[Abstract](29) [FullText HTML] (26) [PDF 1161KB](0)
Abstract:
Spacecraft pose estimation is an important technology to maintain or change the spacecraft orientation in space. For spacecraft pose estimation, when two spacecraft are relatively distant, the depth information of the space point is less than that of the measuring distance, so the camera model can be seen as a weak perspective projection model. In this paper, a spacecraft pose estimation algorithm based on four symmetrical points of the spacecraft outline is proposed. The analytical solution of the spacecraft pose is obtained by solving the weak perspective projection model, which can satisfy the requirements of the measurement model when the measurement distance is long. The optimal solution is obtained from the weak perspective projection model to the perspective projection model, which can meet the measurement requirements when the measuring distance is small. The simulation results show that the proposed algorithm can obtain better results, even though the noise is large.
Generation and Evolution of Cavitation Bubbles in Volume Alternate Cavitation (VAC)
Shangshuang Chen, Yun Wang, Fuzhu Li, Shenwei Xue, Zhenying Xu, Chao Yu, Kun Zhang
2023, 36: 66. doi: 10.1186/s10033-023-00890-w
[Abstract](27) [FullText HTML] (28) [PDF 2726KB](0)
Abstract:
Cavitation generation methods have been used in multifarious directions because of their diversity, and numerous studies and discussions have been conducted on cavitation generation methods. This study aims to explore the generating mechanism and evolution law of volume alternate cavitation (VAC). In the VAC, liquid water is placed in an airtight container with a variable volume. As the volume alternately changes, the liquid water inside the container continues to cavitate. Then, the mixture turbulence model and in-cylinder dynamic grid model are adopted to conduct computational fluid dynamics simulation of volume alternate cavitation. In the simulation, the cloud images at seven heights on the central axis are monitored, and the phenomenon and mechanism of height and eccentricity are analyzed in detail. By employing the cavitation flow visualization method, the generating mechanism and evolution law of cavitation are revealed. The synergistic effects of experiments and high-speed camera capturing confirm the correctness of the simulation results. In the experiment, the volume change stroke of the airtight container is set to 20 mm, the volume change frequency is 18 Hz, and the shooting frequency of the high-speed camera is set to 10000 FPS. The experimental results indicate that the position of the cavitation phenomenon has a reasonable law during the whole evolution cycle of the cavitation cloud. Also, the volume alternation cycle corresponds to the generation, development, and collapse stages of cavitation bubbles.
Allowance Extraction Considering of Inner and Outer Contour and Experimental Research on Belt Grinding of Hollow Blade
Yun Huang, Ming Wei, Guijian Xiao, Shuai Liu, Yuan Wu
2023, 36: 69. doi: 10.1186/s10033-023-00900-x
[Abstract](23) [FullText HTML] (28) [PDF 2624KB](0)
Abstract:
Aero-engine fan blades often use a cavity structure to improve the thrust-to-weight ratio of the aircraft. However, the use of the cavity structure brings a series of difficulties to the manufacturing and processing of the blades. Due to the limitation of blade manufacturing technology, it is difficult for the internal cavity structure to achieve the designed contour shape, so the blade has uneven wall thickness and poor consistency, which affects the fatigue performance and airflow dynamic performance of the blade. In order to reduce the influence of uneven wall thickness, this paper proposes a grinding allowance extraction method considering the double dimension constraints (DDC) of the inner and outer contours of the hollow blade. Constrain the two dimensions of the inner and outer contours of the hollow blade. On the premise of satisfying the outer contour constraints, the machining model of the blade is modified according to the distribution of the inwall contour to obtain a more reasonable distribution of the grinding allowance. On the premise of satisfying the contour constraints, according to the distribution of the inwall contour, the machining model of the blade is modified to obtain a more reasonable distribution of the grinding allowance. Through the grinding experiment of the hollow blade, the surface roughness is below Ra0.4 μm, and the contour accuracy is between − 0.05~0.14 mm, which meets the processing requirements. Compared with the allowance extraction method that only considers the contour, the problem of poor wall thickness consistency can be effectively improved. It can be used to extract the allowance of aero-engine blades with hollow features, which lays a foundation for the study of hollow blade grinding methods with high service performance.
Comparative Study of the Rock-breaking Mechanism of a Disc Cutter and Wedge Tooth Cutter by Discrete Element Modelling
Hua Jiang, Huiyan Zhao, Xiaoyan Zhang, Yusheng Jiang, Yaofu Zheng
2023, 36: 70. doi: 10.1186/s10033-023-00888-4
[Abstract](27) [FullText HTML] (27) [PDF 8066KB](0)
Abstract:
The operation of a shield tunnel boring machine (TBM) in a high-strength hard rock stratum results in significant cutter damage, adversely affecting the thrust and torque of the cutter head. Therefore, it is very important to carry out the research on the stress characteristics and optimize the cutter parameters of cutters break high-strength hard rock. In this paper, the rock-breaking performance of cutters in an andesite stratum in the tunnel of Qingdao Metro Line No. 8 was investigated using the discrete element method and theoretical analysis. The rock-breaking processes of a disc cutter and wedge tooth cutter were simulated by software particle flow code PFC3D, and the rock-breaking degree, stress of the cutter, and rock-breaking specific energy were analyzed. The rock damage caused by the cutter in a specific section was divided into three stages: the advanced influence, crushing, and stabilizing stages. The rock-breaking degree and the tangential and normal forces of the wedge tooth cutter are larger than that of the disc cutter under the same conditions. The disc cutter (wedge tooth cutter) has the highest rock-breaking efficiency at a cutter spacing of 100 mm (110 mm) and a penetration depth of 8 mm (10 mm), and the rock-breaking specific energy is 11.48 MJ/m3 (12.05 MJ/m3). Therefore, two types of cutters with different penetration depths or cutter spacing should be considered. The number of teeth of wedge tooth cutters can be increased in hard strata to improve the rock-breaking efficiency of the shield. The research results provide a reference for shield cutterhead selection and cutter layout in similar projects.
Design of Linear Functional Noncircular Gear with High Contact Ratio Used in Continuously Variable Transmission
Yanan Hu, Chao Lin, Chunjiang He, Yongquan Yu, Zhiqin Cai
2023, 36: 71. doi: 10.1186/s10033-023-00896-4
[Abstract](29) [FullText HTML] (27) [PDF 3511KB](3)
Abstract:
Continuously variable transmission (CVT) of noncircular gear has the technical advantages of large bearing capacity and high transmission efficiency. The key technology of CVT with noncircular gear has been broken through some countries, and is in the stage of deep application research. Although the characteristics and design methods of noncircular gear pairs have been continuously studied in China, the noncircular gear CVT is still in the preliminary exploration and research stage. The linear functional noncircular gear pair, whose transmission ratio is a linear function in the working section, to realize continuously variable transmission was the research object in this paper. According to the required transmission ratio in the working section, the transmission ratio function in the non-working section was constructed by using a polynomial. And then the influence of pitch curve parameters in the working section on which in the non-working section was also analyzed to obtain the pitch curve suitable for transmission of this gear pair. In addition, for improving the stability and bearing capacity of gear transmission, the noncircular gear pair transmission with high contact ratio was designed. Furthermore, the accurate value of the contact tooth length was calculated based on the gear principle and the characteristics of the involute tooth profile, from this the contact tooth length error was calculated by comparing the accurate value with its actual value obtained by the rolling experiment. Finally, an indirect method to verify the contact ratio by detecting the contact length error of the tooth profile was proposed.
Discrete Optimization on Unsteady Pressure Fluctuation of a Centrifugal Pump Using ANN and Modified GA
Wenjie Wang, Qifan Deng, Ji Pei, Jinwei Chen, Xingcheng Gan
2023, 36: 84. doi: 10.1186/s10033-023-00915-4
[Abstract](28) [FullText HTML] (26) [PDF 6594KB](0)
Abstract:
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable, inducing strong vibration in the equipment and shortening its lifecycle. The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices. Considering the time-consuming transient simulation of unsteady pressure, a novel optimization strategy was proposed by discretizing design variables and genetic algorithm. Four highly related design parameters were chosen, and 40 transient sample cases were generated and simulated using an automatic program. 70% of them were used for training the surrogate model, and the others were for verifying the accuracy of the surrogate model. Furthermore, a modified discrete genetic algorithm (MDGA) was proposed to reduce the optimization cost owing to transient numerical simulation. For the benchmark test, the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate. After optimization, the performance and stability of the inline pump were improved. The efficiency increased by more than 2.2%, and the pressure fluctuation intensity decreased by more than 20% under design condition. This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.
Effect of Dynamic Pressure Feedback Orifice on Stability of Cartridge-Type Hydraulic Pilot-Operated Relief Valve
Yaobao Yin, Dong Wang, Junyong Fu, Hong-chao Jian
2023, 36: 85. doi: 10.1186/s10033-023-00922-5
[Abstract](43) [FullText HTML] (30) [PDF 5249KB](2)
Abstract:
Current research on pilot-operated relief valve stability is primarily conducted from the perspective of system dynamics or stability criteria, and most of the existing conclusions focus on the spool shape, damping hole size, and pulsation frequency of the pump. However, the essential factors pertaining to the unstable vibration of relief valves remain ambiguous. In this study, the dynamic behavior of a pilot-operated relief valve is investigated using the frequency-domain method. The result suggests that the dynamic pressure feedback orifice is vital to the dynamic characteristics of the valve. A large orifice has a low flow resistance. In this case, the fluid in the main spring chamber flows freely, which is not conducive to the stability of the relief valve. However, a small orifice may create significant flow resistance, thus restricting fluid flow. In this case, the oil inside the main valve spring chamber is equivalent to a high-stiffness liquid spring. The main mass–spring vibration system has a natural frequency that differs significantly from the operating frequency of the relief valve, which is conducive to the stability of the relief valve. Good agreement is obtained between the theoretical analysis and experiments. The results indicate that designing a dynamic pressure feedback orifice of an appropriate size is beneficial to improving the stability of hydraulic pilot-operated relief valves. In addition, the dynamic pressure feedback orifice reduces the response speed of the relief valve. This study comprehensively considers the stability, rapidity, and immunity of relief valves and expands current investigations into the dynamic characteristics of relief valves from the perspective of classical control theory, thus revealing the importance of different parameters.
Necessary and Sufficient Conditions for Feasible Neighbourhood Solutions in the Local Search of the Job-Shop Scheduling Problem
Lin Gui, Xinyu Li, Liang Gao, Cuiyu Wang
2023, 36: 87. doi: 10.1186/s10033-023-00911-8
[Abstract](44) [FullText HTML] (37) [PDF 2326KB](0)
Abstract:
The meta-heuristic algorithm with local search is an excellent choice for the job-shop scheduling problem (JSP). However, due to the unique nature of the JSP, local search may generate infeasible neighbourhood solutions. In the existing literature, although some domain knowledge of the JSP can be used to avoid infeasible solutions, the constraint conditions in this domain knowledge are sufficient but not necessary. It may lose many feasible solutions and make the local search inadequate. By analysing the causes of infeasible neighbourhood solutions, this paper further explores the domain knowledge contained in the JSP and proposes the sufficient and necessary constraint conditions to find all feasible neighbourhood solutions, allowing the local search to be carried out thoroughly. With the proposed conditions, a new neighbourhood structure is designed in this paper. Then, a fast calculation method for all feasible neighbourhood solutions is provided, significantly reducing the calculation time compared with ordinary methods. A set of standard benchmark instances is used to evaluate the performance of the proposed neighbourhood structure and calculation method. The experimental results show that the calculation method is effective, and the new neighbourhood structure has more reliability and superiority than the other famous and influential neighbourhood structures, where 90% of the results are the best compared with three other well-known neighbourhood structures. Finally, the result from a tabu search algorithm with the new neighbourhood structure is compared with the current best results, demonstrating the superiority of the proposed neighbourhood structure.
Direct-Ink-Writing Printed Strain Rosette Sensor Array with Optimized Circuit Layout
Peishi Yu, Lixin Qi, Zhiyang Guo, Yu Liu, Junhua Zhao
2023, 36: 88. doi: 10.1186/s10033-023-00916-3
[Abstract](43) [FullText HTML] (36) [PDF 3410KB](0)
Abstract:
The full-field multiaxial strain measurement is highly desired for application of structural monitoring but still challenging, especially when the manufacturing and assembling for large-area sensing devices is quite difficult. Compared with the traditional procedure of gluing commercial strain gauges on the structure surfaces for strain monitoring, the recently developed Direct-Ink-Writing (DIW) technology provides a feasible way to directly print sensors on the structure. However, there are still crucial issues in the design and printing strategies to be probed and improved. Therefore, in this work, we propose an integrated strategy from layered circuit scheme to rapid manufacturing of strain rosette sensor array based on the DIW technology. Benefit from the innovative design with simplified circuit layout and the advantages of DIW for printing multilayer structures, here we achieve optimization design principle for strain rosette sensor array with scalable circuit layout, which enable a hierarchical printing strategy for multiaxial strain monitoring in large scale or multiple domains. The strategy is highly expected to adapt for the emerging requirement in various applications such as integrated soft electronics, nondestructive testing and small-batch medical devices.
Cutting Force Fluctuation Suppression and Error Homogenization of Noncircular Gear Hobbing Based on the Tool Shifting Method
Dazhu Li, Jiang Han, Xiaoqing Tian, Lian Xia
2023, 36: 92. doi: 10.1186/s10033-023-00930-5
[Abstract](130) [FullText HTML] (120) [PDF 2917KB](5)
Abstract:
The current research on noncircular hobbing mainly focuses on the linkage model and motion realization. However, the intermittent cutting characteristics of hobbing would increase uncertainties in the manufacturing process. In this paper, a hobbing machining model with tool-shifting characteristics was proposed to solve the problems of cutting force fluctuation and inconsistency of tooth profile envelope accuracy at different positions of the pitch curve in noncircular gear hobbing. Based on the unit cutting force coefficient method, the undeformed chip volume generated by interrupted cutting was used to characterize the fluctuation trend of the hobbing force. The fluctuation characteristics of the cutting force generated by different hobbing models were compared and analyzed. Using the equivalent gear tooth and hob slotting numbers, an analysis model of the tooth profile envelope error of the noncircular gear was constructed. Subsequently, the tooth profile envelope errors at different positions of the pitch curve were compared and analyzed based on the constructed model. The transmission structure of the electronic gearbox was constructed based on the proposed hobbing model, and the hobbing experiment was conducted based on the self-developed noncircular gear CNC hobbing system. This paper proposes a hobbing method that can effectively suppress the fluctuation of the peak and whole circumference cutting force and reduce the maximum envelope error of the whole circumference gear teeth.
A Footpad Structure with Reusable Energy Absorption Capability for Deep Space Exploration Lander: Design and Analysis
Weiyuan Dou, Xiaohang Qiu, Zhiwei Xiong, Yanzhao Guo, Lele Zhang
2023, 36: 93. doi: 10.1186/s10033-023-00918-1
[Abstract](45) [FullText HTML] (43) [PDF 4404KB](1)
Abstract:
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground, and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process. The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation. Nevertheless, its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed, rendering it unusable for reusable landers in the future. This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys (SMA). The topological configuration of the energy absorbing structure is derived using an equivalent static load method (ESL), and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed. To verify the accuracy of the numerical modelling, a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results. Moreover, the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations. The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain, resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%.
Nanometric Cutting Mechanism of Cerium–Lanthanum Alloy
Chenyu Zhao, Min Lai, Fengzhou Fang
2023, 36: 97. doi: 10.1186/s10033-023-00927-0
[Abstract](29) [FullText HTML] (24) [PDF 3491KB](0)
Abstract:
Cerium–lanthanum alloy is widely used in the green energy industry, and the nanoscale smooth surface of this material is in demand. Nanometric cutting is an effective approach to achieving the ultra-precision machining surface. Molecular dynamics (MD) simulation is usually used to reveal the atomic-scale details of the material removal mechanism in nanometric cutting. In this study, the effects of cutting speed and undeformed chip thickness (UCT) on cutting force and subsurface deformation of the cerium–lanthanum alloy during nanometric cutting are analyzed through MD simulation. The results illustrate that the dislocations, stacking faults, and phase transitions occur in the subsurface during cutting. The dislocations are mainly Shockley partial dislocation, and the increase of temperature and pressure during the cutting process leads to the phase transformation of γ-Ce (FCC) into β-Ce (HCP) and δ-Ce (BCC). β-Ce is mainly distributed in the stacking fault area, while δ-Ce is distributed in the boundary area between the dislocation atoms and γ-Ce atoms. The cutting speed and UCT affect the distribution of subsurface damage. A thicker deformed layer including dislocations, stacking faults and phase-transformation atoms on the machined surface is generated with the increase in the cutting speed and UCT. Simultaneously, the cutting speed and UCT significantly affect the cutting force, material removal rate, and generated subsurface state. The fluctuations in the cutting force are related to the generation and disappearance of dislocations. This research first studied the nanometric cutting mechanism of the cerium–lanthanum ally, providing a theoretical basis for the development of ultra-precision machining techniques of these materials.
Source Quantitative Identification by Reference-Based Cubic Blind Deconvolution Algorithm
Xin Luo, Zhousuo Zhang, Teng Gong, Yongjie Li
2023, 36: 98. doi: 10.1186/s10033-023-00928-z
[Abstract](24) [FullText HTML] (28) [PDF 5274KB](0)
Abstract:
The semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information. However, the separation performance depends largely on the construction of reference signals. To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed, the reference-based cubic blind deconvolution algorithm is proposed in this paper. The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration. The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved. By deriving the optimal step size of gradient iteration under the new contrast function, we propose an efficient adaptive step optimization method. Furthermore, the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation. Numerical simulation analysis is carried out to validate the availability and superiority of this method. Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness. The signals of control moment gyroscope and flywheel were extracted, respectively, and the contribution evaluation of vibration sources to the sensitive load area was realized. This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.
Cavitation Diagnostics Based on Self-Tuning VMD for Fluid Machinery with Low-SNR Conditions
Hao Liu, Zheming Tong, Bingyang Shang, Shuiguang Tong
2023, 36: 102. doi: 10.1186/s10033-023-00920-7
[Abstract](45) [FullText HTML] (36) [PDF 6254KB](0)
Abstract:
Variational mode decomposition (VMD) is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters: the decomposed number K and penalty factor α under strong noise interference. To solve this issue, this study proposed self-tuning VMD (SVMD) for cavitation diagnostics in fluid machinery, with a special focus on low signal-to-noise ratio conditions. A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition. A hybrid optimized sparrow search algorithm (HOSSA) was developed for optimal α fine-tuning in a refined space based on fault-type-guided objective functions. Based on the submodes obtained using exclusive penalty factors in each iteration, the cavitation-related characteristic frequencies (CCFs) were extracted for diagnostics. The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition. The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs. Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost. SVMD especially enhances the denoising capability of the VMD-based method.
Experimental Study on Ultrasonic Cavitation Intensity Based on Fluorescence Analysis
Linzheng Ye, Shida Chuai, Xijing Zhu, Dong Wang
2023, 36: 103. doi: 10.1186/s10033-023-00933-2
[Abstract](50) [FullText HTML] (34) [PDF 1845KB](0)
Abstract:
The Ultrasonic cavitation effect has been widely used in mechanical engineering, chemical engineering, biomedicine, and many other fields. The quantitative characterization of ultrasonic cavitation intensity has always been a difficulty. Based on this, a fluorescence analysis method has been adopted to explore ultrasonic cavitation intensity in this paper. In the experiment of fluorescence intensity measurement, terephthalic acid (TA) was used as the fluorescent probe, ultrasonic power, ultrasonic frequency, and irradiation time were independent variables, and fluorescence intensity and fluorescence peak area were used as experimental results. The collapse of cavitation bubble will cause molecular bond breakage and release ·OH, and the non-fluorescent substance TA will form the strong fluorescent substance TAOH with ·OH. The spectra of the treated samples were measured by a F-7000 fluorescence spectrophotometer. The results showed that the fluorescence intensity and fluorescence peak area increased rapidly after ultrasonic cavitation treatment, and then increased slowly with the increase of ultrasonic power, which gradually increased with the increase of irradiation time. They first decreased and then increased with the increase of ultrasonic frequency from 20 kHz to 40 kHz. The irradiation time was the most influential factor, and the cavitation intensity of low frequency was higher overall. The fluorescence intensity and fluorescence peak area of the samples increased by 2–20 times after ultrasonic treatment, which could increase from 69 and 5238 to 1387 and 95451, respectively. After the irradiation time exceeded 25 min, the growth rate of fluorescence intensity slowed down, which was caused by the decrease of gas content and TA concentration in the solution. The study quantitatively characterized the cavitation intensity, reflecting the advantages of fluorescence analysis, and provided a basis for the further study of ultrasonic cavitation.
Multiscale Evaluation of Mechanical Properties for Metal-Coated Lattice Structures
Lizhe Wang, Liu He, Xiang Wang, Sina Soleimanian, Yanqing Yu, Geng Chen, Ji Li, Min Chen
2023, 36: 106. doi: 10.1186/s10033-023-00912-7
[Abstract](39) [FullText HTML] (38) [PDF 2327KB](0)
Abstract:
With the combination of 3D printing and electroplating technique, metal-coated resin lattice is a viable way to achieve lightweight design with desirable responses. However, due to high structural complexity, mechanical analysis of the macroscopic lattice structure demands high experimental or numerical costs. To efficiently investigate the mechanical behaviors of such structure, in this paper a multiscale numerical method is proposed to study the effective properties of the metal-coated Body-Centered-Cubic (BCC) lattices. Unlike studies of a similar kind in which the effective parameters can be predicted from a single unit cell model, it is noticed that the size effect of representative volume element (RVE) is severe and an insensitive prediction can be only obtained from models containing multiple-unit-cells. To this end, the paper determines the minimum number of unit cells in single RVE. Based on the proposed method that is validated through the experimental comparison, parametric studies are conducted to estimate the impact of strut diameter and coating film thickness on structural responses. It is shown that the increase of volume fraction may improve the elastic modulus and specific modulus remarkably. In contrast, the increase of thickness of coating film only leads to monotonously increased elastic modulus. For this reason, there should be an optimal coating film thickness for the specific modulus of the lattice structure. This work provides an effective method for evaluating structural mechanical properties via the mesoscopic model.
Mechanism and Robotics
Gravity-Based Kinetostatic Modeling of Parallel Manipulators Using Screw Theory
Chao Yang, Fengli Huang, Wei Ye, Qiaohong Chen
2023, 36. doi: 10.1186/s10033-023-00975-6
[Abstract](201) [FullText HTML] (210) [PDF 4178KB](13)
Abstract:
The pose accuracy of parallel manipulators (PMs) is a key index to measure their performance. Establishing the gravity-based kinetostatic model of a parallel robot provides an important basis for its error composition and accuracy improvement. In this paper, a kinetostatic modeling approach that takes real gravity distribution into consideration is proposed to analyze the influence of gravity on the infinitesimal twist and actuator forces of PMs. First, the duality of the twist screw and constraint wrenches are used to derive the gravity-attached constraint wrenches independent of the external load and the limb stiffness matrix corresponding to the kinematics-based constraint wrenches. Second, the gravity model of the mechanism is established based on the screw theory and the principle of virtual work. Finally, the analytical formulas of the infinitesimal twist and the actuator force of PMs are obtained, and the influences of the external load, platform gravity, and rod gravity on the stiffness of the mechanism are decoupled. The non-overconstrained 3RPS and overconstrained 2PRU-UPR PMs are taken as examples to verify the proposed method. This research proposes a methodology to analyze the infinitesimal deformation of the mechanism under the influence of gravity.
Configuration Design and Kinematic Performance Analysis of a Novel 4-DOF Parallel Ankle Rehabilitation Mechanism with Two Virtual Motion Centers
Jingke Song, Jun Wei, Bin Yu, Chenglei Liu, Cunjin Ai, Jianjun Zhang
2023, 36. doi: 10.1186/s10033-023-00977-4
[Abstract](45) [FullText HTML] (34) [PDF 3463KB](3)
Abstract:
Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility, an equivalent series mechanism model that is highly matched with the actual bone structure of the human ankle joint is proposed and mapped into a parallel rehabilitation mechanism. The parallel rehabilitation mechanism has two virtual motion centers (VMCs), which can simulate the complex motion of the ankle joint, adapt to the individual differences of various patients, and can meet the rehabilitation needs of both left and right feet of patients. Firstly, based on the motion properties and physiological structure of the human ankle joint, the mapping relationship between the rehabilitation mechanism and ankle joint is determined, and the series equivalent model of the ankle joint is established. According to the kinematic and constraint properties of the ankle equivalent model, the configuration design of the parallel ankle rehabilitation robot is carried out. Secondly, according to the intersecting motion planes theory, the full-cycle mobility of the mechanism is proved, and the continuous axis of the mechanism is judged based on the constraint power and its derivative. Then, the kinematics of the parallel ankle rehabilitation robot is analyzed. Finally, based on the OpenSim biomechanical software, a human-machine coupling rehabilitation simulation model is established to evaluate the rehabilitation effect, which lays the foundation for the formulation of a rehabilitation strategy for the later prototype.
FFT-Based Numerical Method for Nonlinear Elastic Contact
Fei Guo, Fan Wu, Xinyong Li, Yijie Huang, Zhuo Wang
2023, 36. doi: 10.1186/s10033-023-00953-y
[Abstract](41) [FullText HTML] (28) [PDF 4706KB](0)
Abstract:
In theoretical research pertaining to sealing, a contact model must be used to obtain the leakage channel. However, for elastoplastic contact, current numerical methods require a long calculation time. Hyperelastic contact is typically simplified to a linear elastic contact problem, which must be improved in terms of calculation accuracy. Based on the fast Fourier transform, a numerical method suitable for elastoplastic and hyperelastic frictionless contact that can be used for solving two-dimensional and three-dimensional (3D) contact problems is proposed herein. The nonlinear elastic contact problem is converted into a linear elastic contact problem considering residual deformation (or the equivalent residual deformation). Results from numerical simulations for elastic, elastoplastic, and hyperelastic contact between a hemisphere and a rigid plane are compared with those obtained using the finite element method to verify the accuracy of the numerical method. Compared with the existing elastoplastic contact numerical methods, the proposed method achieves a higher calculation efficiency while ensuring a certain calculation accuracy (i.e., the pressure error does not exceed 15%, whereas the calculation time does not exceed 10 min in a 64 × 64 grid). For hyperelastic contact, the proposed method reduces the dependence of the approximation result on the load, as in a linear elastic approximation. Finally, using the sealing application as an example, the contact and leakage rates between complicated 3D rough surfaces are calculated. Despite a certain error, the simplified numerical method yields a better approximation result than the linear elastic contact approximation. Additionally, the result can be used as fast solutions in engineering applications.
Three-Dimensional Conjugate Tooth Surface Design and Contact Analysis of Harmonic Drive with Double-Circular-Arc Tooth Profile
Chaosheng Song, Feihong Zhu, Xinzi Li, Xuesong Du
2023, 36. doi: 10.1186/s10033-023-00909-2
[Abstract](46) [FullText HTML] (32) [PDF 8574KB](1)
Abstract:
A three-dimensional conjugate tooth surface design method for Harmonic Drive with a double-circular-arc tooth profile is proposed. The radial deformation function of the flexspline (FS), obtained through Finite Element (FE) analysis, is incorporated into the kinematics model. By analyzing the FS tooth enveloping process, the optimization of the overlapping conjugate tooth profile is achieved. By utilizing the hobbing process, the three-dimensional machinable tooth surface of FS can be acquired. Utilizing the coning deformation of the FS, simulations are conducted to analyze the multi-section assembly and meshing motion of the machinable tooth surface. The FE method is utilized to analyze and compare the loaded contact characteristics. Results demonstrate that the proposed design method can achieve an internal gear pair consisting of a circular spline with a spur gear tooth surface and the FS with a machinable tooth surface. With the rated torque, approximately 24% of the FS teeth are engaged in meshing, and more than 4/5 of the tooth surface in the axial direction carries the load. The contact patterns, maximum contact pressure, and transmission error of the machinable tooth surface are 227.2%, 40.67%, and 71.24% of those on the spur gear tooth surface, respectively. It clearly demonstrates exceptional transmission performance.
ROS2 Real-time Performance Optimization and Evaluation
Yanlei Ye, Zhenguo Nie, Xinjun Liu, Fugui Xie, Zihao Li, Peng Li
2023, 36. doi: 10.1186/s10033-023-00976-5
[Abstract](43) [FullText HTML] (34) [PDF 7339KB](3)
Abstract:
Real-time interaction with uncertain and dynamic environments is essential for robotic systems to achieve functions such as visual perception, force interaction, spatial obstacle avoidance, and motion planning. To ensure the reliability and determinism of system execution, a flexible real-time control system architecture and interaction algorithm are required. The ROS framework was designed to improve the reusability of robotic software development by providing a distributed structure, hardware abstraction, message-passing mechanism, and application prototypes. Rich ecosystems for robotic development have been built around ROS1 and ROS2 architectures based on the Linux system. However, because of the fairness scheduling principle of the default Linux system design and the complexity of the kernel, the system does not have real-time computing. To achieve a balance between real-time and non-real-time computing, this paper uses the transmission mechanism of ROS2, combines it with the scheduling mechanism of the Linux operating system, and uses Preempt_RT to enhance the real-time computing of ROS1 and ROS2. The real-time performance evaluation of ROS1 and ROS2 is conducted from multiple perspectives, including throughput, transmission mode, QoS service quality, frequency, number of subscription nodes and EtherCAT master. This paper makes two significant contributions: firstly, it employs Preempt_RT to optimize the native ROS2 system, effectively enhancing the real-time performance of native ROS2 message transmission; secondly, it conducts a comprehensive evaluation of the real-time performance of both native and optimized ROS2 systems. This comparison elucidates the benefits of the optimized ROS2 architecture regarding real-time performance, with results vividly demonstrated through illustrative figures.
A Comparative Study on Kinematic Calibration for a 3-DOF Parallel Manipulator Using the Complete-Minimal, Inverse-Kinematic and Geometric-Constraint Error Models
Haiyu Wu, Lingyu Kong, Qinchuan Li, Hao Wang, Genliang Chen
2023, 36. doi: 10.1186/s10033-023-00940-3
[Abstract](35) [FullText HTML] (30) [PDF 6854KB](0)
Abstract:
Kinematic calibration is a reliable way to improve the accuracy of parallel manipulators, while the error model dramatically affects the accuracy, reliability, and stability of identification results. In this paper, a comparison study on kinematic calibration for a 3-DOF parallel manipulator with three error models is presented to investigate the relative merits of different error modeling methods. The study takes into consideration the inverse-kinematic error model, which ignores all passive joint errors, the geometric-constraint error model, which is derived by special geometric constraints of the studied RPR-equivalent parallel manipulator, and the complete-minimal error model, which meets the complete, minimal, and continuous criteria. This comparison focuses on aspects such as modeling complexity, identification accuracy, the impact of noise uncertainty, and parameter identifiability. To facilitate a more intuitive comparison, simulations are conducted to draw conclusions in certain aspects, including accuracy, the influence of the S joint, identification with noises, and sensitivity indices. The simulations indicate that the complete-minimal error model exhibits the lowest residual values, and all error models demonstrate stability considering noises. Hereafter, an experiment is conducted on a prototype using a laser tracker, providing further insights into the differences among the three error models. The results show that the residual errors of this machine tool are significantly improved according to the identified parameters, and the complete-minimal error model can approach the measurements by nearly 90% compared to the inverse-kinematic error model. The findings pertaining to the model process, complexity, and limitations are also instructive for other parallel manipulators.
Type Synthesis of Fully Decoupled Three Translational Parallel Mechanism with Closed-Loop Units and High Stiffness
Shihua Li, Sen Wang, Haoran Li, Yongjie Wang, Shuang Chen
2023, 36. doi: 10.1186/s10033-023-00908-3
[Abstract](21) [FullText HTML] (22) [PDF 2386KB](0)
Abstract:
In order to solve the problem of weak stiffness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stiffness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stiffness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stiffness fully decoupled 3T PM. Kinematic and stiffness analyses show that the Jacobian matrix is a diagonal matrix, and the stiffness is obviously higher than that of the coupling mechanisms, which verifies the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
Variable Curvature Modeling Method of Soft Continuum Robots with Constraints
Yuwang Liu, Wenping Shi, Peng Chen, Liang Cheng, Qing Ding, Zhaoyan Deng
2023, 36. doi: 10.1186/s10033-023-00967-6
[Abstract](41) [FullText HTML] (35) [PDF 3847KB](2)
Abstract:
The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction. This compliance reduces the risk of damage to the manipulated object and its surroundings. However, continuum robots possess theoretically infinite degrees of freedom, and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints. Describing these complex deformations is the main challenge in modeling continuum robots. In this study, we investigated a novel variable curvature modeling method for continuum robots, considering external forces and positional constraints. The robot configuration curve is described using the developed mechanical model, and then the robot is fitted to the curve. A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model. The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load. This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.
Design of A Novel Wheel-Legged Robot with Rim Shape Changeable Wheels
Ze Fu, Hao Xu, Yinghui Li, Weizhong Guo
2023, 36. doi: 10.1186/s10033-023-00974-7
[Abstract](45) [FullText HTML] (35) [PDF 3028KB](5)
Abstract:
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain. However, most of the wheel-legged robots only have one-directional obstacle-crossing ability. During the motion, most of the wheel-legged robots' centroid fluctuates violently, which damages the stability of the load. What's more, many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled, which limits its optimal performance in both aspects. This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel, which has a bi-directional and smooth obstacle-crossing ability. Based on the kinematic model, the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately. The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels. A prototype is made according to the optimal parameters. Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.
Ultralong Stretchable Soft Actuator (US2A): Design, Modeling and Application
Wenbiao Wang, Yunfei Zhu, Shibo Cai, Guanjun Bao
2023, 36: 13. doi: 10.1186/s10033-023-00835-3
[Abstract](75) [FullText HTML] (71) [PDF 9812KB](0)
Abstract:
Actuator plays a significant role in soft robotics. This paper proposed an ultralong stretchable soft actuator (US2A) with a variable and sizeable maximum elongation. The US2A is composed of a silicone rubber tube and a bellows woven sleeve. The maximal extension can be conveniently regulated by just adjusting the wrinkles' initial angle of the bellows woven sleeve. The kinematics of US2A could be obtained by geometrically analyzing the structure of the bellows woven sleeve when the silicone rubber tube is inflated. Based on the principle of virtual work, the actuating models have been established: the pressure-elongation model and the pressure-force model. These models reflect the influence of the silicone tube's shell thickness and material properties on the pneumatic muscle's performance, which facilitates the optimal design of US2A for various working conditions. The experimental results showed that the maximum elongation of the US2A prototype is 257%, and the effective elongation could be variably regulated in the range of 0 and 257%. The proposed models were also verified by pressure-elongation and pressure-force experiments, with an average error of 5% and 2.5%, respectively. Finally, based on the US2A, we designed a pneumatic rehabilitation glove, soft arm robot, and rigid-soft coupling continuous robot, which further verified the feasibility of US2A as a soft driving component.
Inverted Modelling: An Effective Way to Support Motion Planning of Legged Mobile Robots
Chenyao Zhao, Weizhong Guo
2023, 36: 19. doi: 10.1186/s10033-023-00851-3
[Abstract](107) [FullText HTML] (73) [PDF 5461KB](3)
Abstract:
This paper presents an effective way to support motion planning of legged mobile robots—Inverted Modelling, based on the equivalent metamorphic mechanism concept. The difference from the previous research is that we herein invert the equivalent parallel mechanism. Assuming the leg mechanisms are hybrid links, the body of robot being considered as fixed platform, and ground as moving platform. The motion performance is transformed and measured in the body frame. Terrain and joint limits are used as input parameters to the model, resulting in the representation which is independent of terrains and particular poses in Inverted Modelling. Hence, it can universally be applied to any kind of legged robots as global motion performance framework. Several performance measurements using Inverted Modelling are presented and used in motion performance evaluation. According to the requirements of actual work like motion continuity and stability, motion planning of legged robot can be achieved using different measurements on different terrains. Two cases studies present the simulations of quadruped and hexapod robots walking on rugged roads. The results verify the correctness and effectiveness of the proposed method.
Force Analysis of the Overconstrained Mechanisms Based on Equivalent Stiffness Considering Limb Axial Deformation
Jinwei Guo, Yongsheng Zhao, Bo Chen, Guoxing Zhang, Yundou Xu, Jiantao Yao
2023, 36: 23. doi: 10.1186/s10033-023-00845-1
[Abstract](82) [FullText HTML] (88) [PDF 1737KB](0)
Abstract:
Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability, but its force analysis is complex and difficult because the mechanism system contains overconstraints. Considering the limb axial deformation, taking typical 2SS+P and 7-SS passive overconstrained mechanisms, 2SPS+P and 7-SPS active overconstrained mechanisms, and 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples, a new force analysis method based on the idea of equivalent stiffness is proposed. The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the force balance and deformation compatibility equations with consideration of axial elastic limb deformations. The relationship between the constraint wrench magnitudes and the external force, limb stiffness is established. The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance and displacement compatibility equations. Here, the relationship between the magnitudes of the actuated wrenches and the external force, limb stiffness is investigated. Combining with the equivalent stiffness of the passive overconstrained mechanism, an analytical relationship between the actuated forces of passive-input overconstrained mechanism and the output displacement, limb stiffness is explored. Finally, adaptability of the equivalent stiffness to overconstrained mechanisms is discussed, and the effect of the limb stiffness on overconstrained mechanisms force distribution is revealed. The research results provide a theoretical reference for the design, research and practical application of overconstrained mechanism.
Power Consumption Characteristics Research on Mobile System of Electrically Driven Large-Load-Ratio Six-Legged Robot
Hongchao Zhuang, Ning Wang, Haibo Gao, Zongquan Deng
2023, 36: 26. doi: 10.1186/s10033-023-00848-y
[Abstract](100) [FullText HTML] (81) [PDF 5362KB](0)
Abstract:
The electrically driven large-load-ratio six-legged robot with engineering capability can be widely used in outdoor and planetary exploration. However, due to the particularity of its parallel structure, the effective utilization rate of energy is not high, which has become an important obstacle to its practical application. To research the power consumption characteristics of robot mobile system is beneficial to speed up it toward practicability. Based on the configuration and walking modes of robot, the mathematical model of the power consumption of mobile system is set up. In view of the tripod gait is often selected for the six-legged robots, the simplified power consumption model of mobile system under the tripod gait is established by means of reducing the dimension of the robot's statically indeterminate problem and constructing the equal force distribution. Then, the power consumption of robot mobile system is solved under different working conditions. The variable tendencies of the power consumption of robot mobile system are respectively obtained with changes in the rotational angles of hip joint and knee joint, body height, and span. The articulated rotational zones and the ranges of body height and span are determined under the lowest power consumption. According to the walking experiments of prototype, the variable tendencies of the average power consumption of robot mobile system are respectively acquired with changes in duty ratio, body height, and span. Then, the feasibility and correctness of theory analysis are verified in the power consumption of robot mobile system. The proposed analysis method in this paper can provide a reference on the lower power research of the large-load-ratio multi-legged robots.
A Real-time Look-ahead Trajectory Planning Methodology for Multi Small Line Segments Path
Sai Zhang, Xinjun Liu, Bingkai Yan, Jie Bi, Xiangdong Han
2023, 36: 59. doi: 10.1186/s10033-023-00881-x
[Abstract](24) [FullText HTML] (25) [PDF 3218KB](0)
Abstract:
When a robot is required to machine a complex curved workpiece with high precision and speed, the tool path is typically dispersed into a series of points and transmitted to the robot. The conventional trajectory planning method requires frequent starts and stops at each dispersed point to complete the task. This method not only reduces precision but also causes damage to the motors and robot. A real-time look-ahead algorithm is proposed in this paper to improve precision and minimize damage. The proposed algorithm includes a path-smoothing algorithm, a trajectory planning method, and a bidirectional scanning module. The path-smoothing method inserts a quintic Bezier curve between small adjacent line segments to achieve \begin{document}$ G^{2} $\end{document} continuity at the junctions. The trajectory planning method utilizes a quartic polynomial and a double-quartic polynomial that can achieve a constant velocity at the velocity limitation. The bidirectional scanning module calculates the velocity at each trajectory planning segment point, simplifying calculation complexity and can be run in real time. The feasibility of the proposed algorithm is verified through simulations and experiments, which can be run in real time. In addition, high machining precision can be achieved by adjusting the relevant parameters.
An Adaptive Hand Exoskeleton for Teleoperation System
Wei Wei, Bangda Zhou, Bingfei Fan, Mingyu Du, Guanjun Bao, Shibo Cai
2023, 36: 60. doi: 10.1186/s10033-023-00882-w
[Abstract](26) [FullText HTML] (26) [PDF 4309KB](0)
Abstract:
Teleoperation can assist people to complete various complex tasks in inaccessible or high-risk environments, in which a wearable hand exoskeleton is one of the key devices. Adequate adaptability would be available to enable the master hand exoskeleton to capture the motion of human fingers and reproduce the contact force between the slave hand and its object. This paper presents a novel finger exoskeleton based on the cascading four-link closed-loop kinematic chain. Each finger has an independent closed-loop kinematic chain, and the angle sensors are used to obtain the finger motion including the flexion/extension and the adduction/abduction. The cable tension is changed by the servo motor to transmit the contact force to the fingers in real time. Based on the finger exoskeleton, an adaptive hand exoskeleton is consequently developed. In addition, the hand exoskeleton is tested in a master–slave system. The experiment results show that the adaptive hand exoskeleton can be worn without any mechanical constraints, and the slave hand can follow the motions of each human finger. The accuracy and the real-time capability of the force reproduction are validated. The proposed adaptive hand exoskeleton can be employed as the master hand to remotely control the humanoid five-fingered dexterous slave hand, thus, enabling the teleoperation system to complete complex dexterous manipulation tasks.
Human Visual Attention Mechanism-Inspired Point-and-Line Stereo Visual Odometry for Environments with Uneven Distributed Features
Chang Wang, Jianhua Zhang, Yan Zhao, Youjie Zhou, Jincheng Jiang
2023, 36: 62. doi: 10.1186/s10033-023-00872-y
[Abstract](25) [FullText HTML] (24) [PDF 3213KB](2)
Abstract:
Visual odometry is critical in visual simultaneous localization and mapping for robot navigation. However, the pose estimation performance of most current visual odometry algorithms degrades in scenes with unevenly distributed features because dense features occupy excessive weight. Herein, a new human visual attention mechanism for point-and-line stereo visual odometry, which is called point-line-weight-mechanism visual odometry (PLWM-VO), is proposed to describe scene features in a global and balanced manner. A weight-adaptive model based on region partition and region growth is generated for the human visual attention mechanism, where sufficient attention is assigned to position-distinctive objects (sparse features in the environment). Furthermore, the sum of absolute differences algorithm is used to improve the accuracy of initialization for line features. Compared with the state-of-the-art method (ORB-VO), PLWM-VO show a 36.79% reduction in the absolute trajectory error on the Kitti and Euroc datasets. Although the time consumption of PLWM-VO is higher than that of ORB-VO, online test results indicate that PLWM-VO satisfies the real-time demand. The proposed algorithm not only significantly promotes the environmental adaptability of visual odometry, but also quantitatively demonstrates the superiority of the human visual attention mechanism.
General Kinetostatic Modeling and Deformation Analysis of a Two-Module Rod-Driven Continuum Robot with Friction Considered
Peiyi Wang, Xinhua Yang, Xiangyang Wang, Sheng Guo
2023, 36: 68. doi: 10.1186/s10033-023-00893-7
[Abstract](27) [FullText HTML] (23) [PDF 7075KB](0)
Abstract:
Continuum robots actuated by flexible rods have large potential applications, such as detection and operation tasks in confined environments, since the push and pull actuation of flexible rods withstand tension and compressive force, and increase the structure's rigidity. In this paper, a generalized kinetostatics model for multi-module and multi-segment continuum robots considering the effect of friction based on the Cosserat rod theory is established. Then, the model is applied to a two-module rod-driven continuum robot with winding ropes to analyze its deformation and load characteristics. Four different in-plane configurations under the external load term as S1, S2, C1, and C2 are defined. Taking a bending plane as an example, the tip deformation along the x-axis of these shapes is simulated and compared, which shows that the load capacity of C1 and C2 is generally larger than that of S1 and S2. Furthermore, the deformation experiments and simulations show that the maximum error ratio without external loads relative to the total length is no more than 3%, and it is no more than 4.7% under the external load. The established kinetostatics model is proven sufficient to accurately analyze the rod-driven continuum robot with the consideration of internal friction.
Smooth Trajectory Planning for a Cable Driven Parallel Waist Rehabilitation Robot Based on Rehabilitation Evaluation Factors
Yuan Li, Bin Zi, Zhi Sun, Ping Zhao
2023, 36: 73. doi: 10.1186/s10033-023-00906-5
[Abstract](28) [FullText HTML] (24) [PDF 4285KB](0)
Abstract:
Rehabilitation robots can help physiatrists to assist patients in improving their movement ability. Due to the interaction between rehabilitation robots and patients, the robots need to complete rehabilitation training on a safe basis. This paper presents an approach for smooth trajectory planning for a cable-driven parallel waist rehabilitation robot (CDPWRR) based on the rehabilitation evaluation factors. First, motion capture technology is used to collect the motion data of several volunteers in waist twisting. Considering the impact of motion variability, the feature points at the center of the human pelvis are obtained after eliminating unreasonable data through rationality judgments. Then, point-to-point waist training trajectory planning based on quintic polynomial and cycloid functions, and multipoint waist training trajectory planning based on quintic B-spline functions are carried out. The corresponding planned curves and kinematics characteristics using three methods are compared and analyzed. Subsequently, the rehabilitation evaluation factors are introduced to conduct smooth trajectory planning for waist training, and the waist trajectory with better compliance is obtained based on the safety and feasibility of waist motion. Finally, the physical prototype of the CDPWRR is built, and the feasibility and effectiveness of the proposed smooth trajectory planning method are proved by numerical analysis and experiments.
Glass Recognition and Map Optimization Method for Mobile Robot Based on Boundary Guidance
Yong Tao, He Gao, Yufang Wen, Lian Duan, Jiangbo Lan
2023, 36: 74. doi: 10.1186/s10033-023-00902-9
[Abstract](32) [FullText HTML] (23) [PDF 1971KB](0)
Abstract:
Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance. In commercial and domestic constructions, concrete, wood, and glass are typically used. Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls. However, indoor and outdoor glass curtain walls may fail to perceive these transparent materials. In this study, a novel indoor glass recognition and map optimization method based on boundary guidance is proposed. First, the status of glass recognition techniques is analyzed comprehensively. Next, a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed. Finally, map optimization and path-planning tests are conducted and compared using different algorithms. The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls. Using the proposed method, the recognition accuracy of a public test set increases to 94.1%. After adding the planning map, incorrect coverage redundancies for two test scenes reduce by 59.84% and 55.7%. Herein, a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.
Task-Oriented Topology System Synthesis of Reconfigurable Legged Mobile Lander Integrating Active and Passive Metamorphoses
Youcheng Han, Ziyue Li, Gaohan Zhu, Weizhong Guo, Jianzhong Yang, Wei Liu
2023, 36: 77. doi: 10.1186/s10033-023-00899-1
[Abstract](26) [FullText HTML] (23) [PDF 9872KB](0)
Abstract:
To explore hostile extraterrestrial landforms and construct an engineering prototype, this paper presents the task-oriented topology system synthesis of reconfigurable legged mobile lander (ReLML) with three operation modes from adjusting, landing, to roving. Compared with our preceding works, the adjusting mode with three rotations (3R) provides a totally novel exploration approach to geometrically matching and securely arriving at complex terrains dangerous to visit currently; the landing mode is redefined by two rotations one translation (2R1T), identical with the tried-and-tested Apollo and Chang'E landers to enhance survivability via reasonable touchdown buffering motion; roving mode also utilizes 2R1T motion for good motion and force properties. The reconfigurable mechanism theory is first brought into synthesizing legged mobile lander integrating active and passive metamorphoses, composed of two types of metamorphic joints and metamorphic execution and transmission mechanisms. To reveal metamorphic principles with multiple finite motions, the finite screw theory is developed to present the procedure from unified mathematical representation, modes and source phase derivations, metamorphic joint and limb design, to final structure assembly. To identify the prototype topology, the 3D optimal selection matrix method is proposed considering three operation modes, five evaluation criteria, and two topological subsystems. Finally, simulation verifies the whole task implementation process to ensure the reasonability of design.
A Closed-Loop Dynamic Controller for Active Vibration Isolation Working on A Parallel Wheel-Legged Robot
Fei Guo, Shoukun Wang, Daohe Liu, Junzheng Wang
2023, 36: 79. doi: 10.1186/s10033-023-00897-3
[Abstract](27) [FullText HTML] (23) [PDF 3575KB](0)
Abstract:
Serving the Stewart mechanism as a wheel-legged structure, the most outstanding superiority of the proposed wheel-legged hybrid robot (WLHR) is the active vibration isolation function during rolling on rugged terrain. However, it is difficult to obtain its precise dynamic model, because of the nonlinearity and uncertainty of the heavy robot. This paper presents a dynamic control framework with a decentralized structure for single wheel-leg, position tracking based on model predictive control (MPC) and adaptive impedance module from inside to outside. Through the Newton-Euler dynamic model of the Stewart mechanism, the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart. The actuating force naturally enables each strut to stretch and retract, thereby realizing six degrees-of-freedom (6-DOFs) position-tracking for Stewart wheel-leg. The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis. This adjustment allows the robot to adequately control the desired support force tracking, isolating the robot body from vibration that is generated from unknown terrain. The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips. By comparing the proportional and integral (PI) and constant impedance controllers, better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder, as well as an inertial measurement unit (IMU) mounted on the robot body. The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
A Wire-Driven Series Elastic Mechanism Based on Ultrasonic Motor for Walking Assistive System
Weihao Ren, Hiroki Yoshioka, Lin Yang, Takeshi Morita
2023, 36: 81. doi: 10.1186/s10033-023-00903-8
[Abstract](25) [FullText HTML] (24) [PDF 2115KB](0)
Abstract:
In order to improve the elderly people's quality of life, supporting their walking behaviors is a promising technology. Therefore, based on one ultrasonic motor, a wire-driven series elastic mechanism for walking assistive system is proposed and investigated in this research. In contrast to tradition, it innovatively utilizes an ultrasonic motor and a wire-driven series elastic mechanism to achieve superior system performances in aspects of simple structure, high torque/weight ratio, quiet operation, quick response, favorable electromagnetic compatibility, strong shock resistance, better safety, and accurately stable force control. The proposed device is mainly composed of an ultrasonic motor, a linear spring, a steel wire, four pulleys and one rotating part. To overcome the ultrasonic motor's insufficient output torque, a steel wire and pulleys are smartly combined to directly magnify the torque instead of using a conventional gear reducer. Among the pulleys, there is one tailored pulley playing an important role to keep the reduction ratio as 4.5 constantly. Meanwhile, the prototype is manufactured and its actual performance is verified by experimental results. In a one-second operating cycle, it only takes 86 ms for this mechanism to output an assistive torque of 1.6 N·m. At this torque, the ultrasonic motor's speed is around 4.1 rad/s. Moreover, experiments with different operation periods have been conducted for different application scenarios. This study provides a useful idea for the application of ultrasonic motor in walking assistance system.
NuBot: A Magnetic Adhesion Robot with Passive Suspension to Inspect the Steel Lining
Hao Xu, Youcheng Han, Mingda He, Yinghui Li, Weizhong Guo
2023, 36: 90. doi: 10.1186/s10033-023-00905-6
[Abstract](27) [FullText HTML] (25) [PDF 4461KB](0)
Abstract:
The steel lining of huge facilities is a significant structure, which experiences extreme environments and needs to be inspected periodically after manufacture. However, due to the complexity (crisscross welds, curved surface, etc.) of their inside environments, high demands for stable adhesion and curvature adaptability are put forward. This paper presents a novel wheeled magnetic adhesion robot with passive suspension applied in nuclear power containment called NuBot, and mainly focuses on the following aspects: (1) proposing the wheeled locomotion suspension to adapt the robot to the uneven surface; (2) implementing the parameter optimization of NuBot. A comprehensive optimization model is established, and global optimal dimensions are properly chosen from performance atlases; (3) determining the normalization factor and actual dimensional parameters by constraints of the steel lining environment; (4) structure design of the overall robot and the magnetic wheels are completed. Experiments show that the robot can achieve precise locomotion on both strong and weak magnetic walls with various inclination angles, and can stably cross the 5 mm weld seam. Besides, its maximum payload capacity reaches 3.6 kg. Results show that the NuBot designed by the proposed systematic method has good comprehensive capabilities of surface-adaptability, adhesion stability, and payload. Besides, the robot can be applied in more ferromagnetic environments and the design method offers guidance for similar wheeled robots with passive suspension.
Model of Surface Texture for Honed Gear Considering Motion Path and Geometrical Shape of Abrasive Particle
Yuhu Liu, Xiaohui Huang, Huajun Cao, Jiacheng Wang, Huapan Xiao
2023, 36: 96. doi: 10.1186/s10033-023-00910-9
[Abstract](128) [FullText HTML] (93) [PDF 2767KB](4)
Abstract:
Gear power-honing is mainly applied to finish small and medium-sized automotive gears, especially in new energy vehicles. The distinctive curved surface texture greatly improves the noise emission and service life of honed gears. The surface texture for honed gear considering the motion path and geometrical shape of abrasive particles has not been investigated. In this paper, the kinematics of the gear honing process is analyzed, and the machining marks produced by the abrasive particles of honing wheel scratching abrasive particles against the workpiece gear are calculated. The tooth surface roughness is modeled considering abrasive particle shapes and material plastic pile-ups. This results in a mathematical model that characterizes the structure of the tooth surface and the orientation of the machining marks. Experiments were used to verify the model, with a maximum relative error of less than 10% when abrasive particles are spherical. Based on this model, the effects of process parameters on the speeds of discrete points on the tooth flank, orientations of machining marks and roughness are discussed. The results show that the shaft angle between the workpiece gear and the honing wheel and the speed of the honing wheel is the main process parameters affecting the surface texture. This research proposes a surface texture model for honed gear, which can provide a theoretical basis for optimizing process parameters for gear power-honing.
Design and Research of Form Controlled Planar Folding Mechanism based on 4D Printing Technology
Wencai Zhang, Zhenghao Ge, Duanling Li
2023, 36: 99. doi: 10.1186/s10033-023-00917-2
[Abstract](24) [FullText HTML] (22) [PDF 3348KB](0)
Abstract:
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications. However, this approach can result in a complex structure and excessive kinematic pairs, which limits its potential applications due to the difficulty in controlling and actuating the mechanism. While smart materials have been integrated into certain mechanisms, such integration is generally considered a unique design for specific cases and lacks universality. Therefore, organically combining universal mechanism design with smart materials and 4D printing technology, innovating mechanism types, and systematically exploring the interplay between structural design and morphing control remains an open research area. In this work, a novel form-controlled planar folding mechanism is proposed, which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology, while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation. The design characteristics of the mechanism are analyzed, and the required structural design parameters for the preprogrammed design are derived using a kinematic model. Using smart materials and 4D printing technology, folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism. Finally, two sets of prototype mechanisms are printed to validate the feasibility of the design, the effectiveness of the morphing control programs, and the accuracy of the theoretical analysis. This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems.
Fretting Wear Characteristics of Nuclear Fuel Cladding in High-Temperature Pressurized Water
Jun Wang, Haojie Li, Zhengyang Li, Yujie Lei, Quanyao Ren, Yongjun Jiao, Zhenbing Cai
2023, 36: 101. doi: 10.1186/s10033-023-00931-4
[Abstract](41) [FullText HTML] (34) [PDF 10337KB](0)
Abstract:
In pressurized water reactor (PWR), fretting wear is one of the main causes of fuel assembly failure. Moreover, the operation condition of cladding is complex and harsh. A unique fretting damage test equipment was developed and tested to simulate the fretting damage evolution process of cladding in the PWR environment. It can simulate the fretting wear experiment of PWR under different temperatures (maximum temperature is 350 ℃), displacement amplitude, vibration frequency, and normal force. The fretting wear behavior of Zr-4 alloy under different temperature environments was tested. In addition, the evolution of wear scar morphology, profile, and wear volume was studied using an optical microscope (OM), scanning electron microscopy (SEM), and a 3D white light interferometer. Results show that higher water temperature evidently decreased the cladding wear volume, the wear mechanism of Zr-4 cladding changed from abrasive wear to adhesive wear and the formation of an oxide layer on the wear scar reduced the wear volume and maximum wear depth.
Configuration Synthesis and Lightweight Networking of Deployable Mechanism Based on a Novel Pyramid Module
Jinwei Guo, Jianliang He, Guoxing Zhang, Yongsheng Zhao, Yundou Xu
2023, 36: 105. doi: 10.1186/s10033-023-00934-1
[Abstract](101) [FullText HTML] (85) [PDF 4067KB](3)
Abstract:
Deployable mechanism with preferable deployable performance, strong expansibility, and lightweight has attracted much attention because of their potential in aerospace. A basic deployable pyramid unit with good deployability and expandability is proposed to construct a sizeable deployable mechanism. Firstly, the basic unit folding principle and expansion method is proposed. The configuration synthesis method of adding constraint chains of spatial closed-loop mechanism is used to synthesize the basic unit. Then, the degree of freedom of the basic unit is analyzed using the screw theory and the link dismantling method. Next, the three-dimensional models of the pyramid unit, expansion unit, and array unit are established, and the folding motion simulation analysis is carried out. Based on the number of components, weight reduction rate, and deployable rate, the performance characteristics of the three types of mechanisms are described in detail. Finally, prototypes of the pyramid unit, combination unit, and expansion unit are developed to verify further the correctness of the configuration synthesis based on the pyramid. The proposed deployable mechanism provides aference for the design and application of antennas with a large aperture, high deployable rate, and lightweight. It has a good application prospect in the aerospace field.
Advanced Transportation Equipment
An Improved Time-Domain Inverse Technique for Localization and Quantification of Rotating Sound Sources
Xiaozheng Zhang, Yinlong Li, Yongbin Zhang, Chuanxing Bi, Jinghao Li, Liang Xu
2023, 36. doi: 10.1186/s10033-023-00958-7
[Abstract](97) [FullText HTML] (80) [PDF 3938KB](3)
Abstract:
The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difficulty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is first applied to eliminate the Doppler effect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler effect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler effect effectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efficiently than the original one.
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
Qing Xu, Xuewu Lin, Mengchi Cai, Yu-ang Guo, Chuang Zhang, Kai Li, Keqiang Li, Jianqiang Wang, Dongpu Cao
2023, 36. doi: 10.1186/s10033-023-00962-x
[Abstract](33) [FullText HTML] (28) [PDF 5628KB](0)
Abstract:
Environment perception is one of the most critical technology of intelligent transportation systems (ITS). Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking (MOT). However, most existing MOT algorithms follow the tracking-by-detection framework, which separates detection and tracking into two independent segments and limit the global efficiency. Recently, a few algorithms have combined feature extraction into one network; however, the tracking portion continues to rely on data association, and requires complex post-processing for life cycle management. Those methods do not combine detection and tracking efficiently. This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS, named as global correlation network (GCNet). Unlike most object detection methods, GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes, instead of offsetting predictions. The pipeline of detection and tracking in GCNet is conceptually simple, and does not require complicated tracking strategies such as non-maximum suppression and data association. GCNet was evaluated on a multi-vehicle tracking dataset, UA-DETRAC, demonstrating promising performance compared to state-of-the-art detectors and trackers.
Dynamic Simulation and Test Verification of Hydraulic Automatic Tensioner for an Engine Timing Chain Drive System
Zengming Feng, Jinxing Yang, Fei Wang
2023, 36. doi: 10.1186/s10033-023-00952-z
[Abstract](25) [FullText HTML] (19) [PDF 3976KB](1)
Abstract:
As a fundamental component of an automobile engine’s timing chain drive system, the hydraulic automatic tensioner significantly enhances fuel economy while minimizing system vibrations and noise. However, there is a noticeable lack of research on automatic hydraulic tensioners. This study presents a comprehensive calculation approach for the principal parameters of a hydraulic automatic tensioner. An effective method, grounded in hydraulics and multibody dynamics, was introduced for estimating the dynamic response of such a tensioner. The simulation model developed for the hydraulic tensioner is characterized by its rapid dynamic response, consistent operation, and high accuracy. The dynamic behavior of the tensioner was analyzed under varying boundary conditions, using sinusoidal signal excitation. It was observed that the maximum damping force increases with a decreasing leakage gap. Conversely, an increase in oil temperature or air content leads to a decrease in the maximum damping force. The reaction forces derived from these calculations align well with experimental results. This calculation and simulation approach offers considerable value for the design of innovative hydraulic tensioners. It not only streamlines the design phase, minimizes the number of trials, and reduces product costs, but also provides robust insights for evaluating the performance of hydraulic tensioners.
Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using Ultrasonic Images
Fupei Wu, Xiaoyang Xie, Weilin Ye
2023, 36. doi: 10.1186/s10033-023-00980-9
[Abstract](44) [FullText HTML] (33) [PDF 2804KB](4)
Abstract:
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains. For this reason, a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper. First, a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples. Second, an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image, which improved the accuracy of defect detection. Subsequently, to optimize the detection performance of the proposed model, the Mish activation function was used to design the block module of the feature extraction network. Finally, the proposed rail defect detection model was trained. The experimental results showed that the precision rate and \begin{document}$ {F}_{1} $\end{document} score of the proposed method were as high as 98%, while the model’s recall rate reached 99%. Specifically, good detection results were achieved for different types of defects, which provides a reference for the engineering application of internal defect detection. Experimental results verified the effectiveness of the proposed method.
Online Identification of Lithium-ion Battery Model Parameters with Initial Value Uncertainty and Measurement Noise
Xinghao Du, Jinhao Meng, Kailong Liu, Yingmin Zhang, Shunli Wang, Jichang Peng, Tianqi Liu
2023, 36: 7. doi: 10.1186/s10033-023-00846-0
[Abstract](98) [FullText HTML] (86) [PDF 3210KB](0)
Abstract:
Online parameter identification is essential for the accuracy of the battery equivalent circuit model (ECM). The traditional recursive least squares (RLS) method is easily biased with the noise disturbances from sensors, which degrades the modeling accuracy in practice. Meanwhile, the recursive total least squares (RTLS) method can deal with the noise interferences, but the parameter slowly converges to the reference with initial value uncertainty. To alleviate the above issues, this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM. RLS converges quickly by updating the parameters along the gradient of the cost function. RTLS is applied to attenuate the noise effect once the parameters have converged. Both simulation and experimental results prove that the proposed method has good accuracy, a fast convergence rate, and also robustness against noise corruption.
A Compensation Algorithm for Large Element Characterizing the Damage Evolution Process and Its Application to Structure Collisions
Wen Liu, Lele Zhang, Yifan Ru, Geng Chen, Weiyuan Dou
2023, 36: 8. doi: 10.1186/s10033-023-00837-1
[Abstract](98) [FullText HTML] (80) [PDF 3940KB](0)
Abstract:
When simulating the process from elastic–plastic deformation, damage to failure in a metal structure collision, it is necessary to use the large shell element due to the calculation efficiency, but this would affect the accuracy of damage evolution simulation. The compensation algorithm adjusting failure strain according to element size is usually used in the damage model to deal with the problem. In this paper, a new nonlinear compensation algorithm between failure strain and element size was proposed, which was incorporated in the damage model GISSMO (Generalized incremental stress state dependent damage model) to characterize ductile fracture. And associated material parameters were calibrated based on tensile experiments of aluminum alloy specimens with notches. Simulation and experimental results show that the new compensation algorithm significantly reduces the dependence of element size compared with the constant failure strain model and the damage model with the linear compensation algorithm. During the axial splitting process of a circular tubular structure, the new compensation algorithm keeps the failure prediction errors low over the stress states ranging from shear to biaxial tension, and achieves the objective prediction of the damage evolution process. This study demonstrates how the compensation algorithm resolves the contradiction between large element size and fracture prediction accuracy, and this facilitates the use of the damage model in ductile fracture prediction for engineering structures.
Crack Growth Rate Model Derived from Domain Knowledge-Guided Symbolic Regression
Shuwei Zhou, Bing Yang, Shoune Xiao, Guangwu Yang, Tao Zhu
2023, 36: 40. doi: 10.1186/s10033-023-00876-8
[Abstract](26) [FullText HTML] (22) [PDF 6545KB](0)
Abstract:
Machine learning (ML) has powerful nonlinear processing and multivariate learning capabilities, so it has been widely utilised in the fatigue field. However, most ML methods are inexplicable black-box models that are difficult to apply in engineering practice. Symbolic regression (SR) is an interpretable machine learning method for determining the optimal fitting equation for datasets. In this study, domain knowledge-guided SR was used to determine a new fatigue crack growth (FCG) rate model. Three terms of the variable subtree of ΔK, R-ratio, and ΔKth were obtained by analysing eight traditional semi-empirical FCG rate models. Based on the FCG rate test data from other literature, the SR model was constructed using Al-7055-T7511. It was subsequently extended to other alloys (Ti-10V-2Fe-3Al, Ti-6Al-4V, Cr-Mo-V, LC9cs, Al-6013-T651, and Al-2324-T3) using multiple linear regression. Compared with the three semi-empirical FCG rate models, the SR model yielded higher prediction accuracy. This result demonstrates the potential of domain knowledge-guided SR for building the FCG rate model.
Contact Mechanism of Rail Grinding with Open-Structured Abrasive Belt Based on Pressure Grinding Plate
Zhiwei Wu, Wengang Fan, Chang Qian, Guangyou Hou
2023, 36: 42. doi: 10.1186/s10033-023-00862-0
[Abstract](88) [FullText HTML] (79) [PDF 5218KB](0)
Abstract:
The current research of abrasive belt grinding rail mainly focuses on the contact mechanism and structural design. Compared with the closed structure abrasive belt grinding, open-structured abrasive belt grinding has excellent performance in dynamic stability, consistency of grinding quality, extension of grinding mileage and improvement of working efficiency. However, in the contact structure design, the open-structured abrasive belt grinding rail using a profiling pressure grinding plate and the closed structure abrasive belt using the contact wheel are different, and the contact mechanisms of the two are different. In this paper, based on the conformal contact and Hertz theory, the contact mechanism of the pressure grinding plate, abrasive belt and rail is analyzed. Through finite element simulation and static pressure experiment, the contact behavior of pressure grinding plate, abrasive belt and rail under single concentrated force, uniform force and multiple concentrated force was studied, and the distribution characteristics of contact stress on rail surface were observed. The results show that under the same external load, there are three contact areas under the three loading modes. The outer contour of the middle contact area is rectangular, and the inner contour is elliptical. In the contact area at both ends, the stress is extremely small under a single concentrated force, the internal stress is drop-shaped under a uniform force, and the internal stress under multiple concentration forces is elliptical. Compared with the three, the maximum stress is the smallest and the stress distribution is more uniform under multiple concentrated forces. Therefore, the multiple concentrated forces is the best grinding pressure loading mode. The research provides support for the application of rail grinding with open-structured abrasive belt based on pressure grinding plate, such as contact mechanism and grinding pressure mode selection.
Modified Model of Crack Tip Stress Field Considering Dislocation Slip Accumulation and Crack Tip Blunting
Jian Li, Bing Yang, Shuancheng Wang, M. N. James, Shoune Xiao, Tao Zhu, Guangwu Yang
2023, 36: 47. doi: 10.1186/s10033-023-00875-9
[Abstract](150) [FullText HTML] (96) [PDF 3311KB](0)
Abstract:
This study uses the digital image correlation technique to measure the crack tip displacement field at various crack lengths in U71MnG rail steel, and the interpolated continuous displacement field was obtained by fitting with a back propagation (BP) neural network. The slip and stacking of dislocations affect crack initiation and growth, leading to changes in the crack tip field and the fatigue characteristics of crack growth. The Christopher-James-Patterson (CJP) model describes the elastic stress field around a growing fatigue crack that experiences plasticity-induced shielding. In the present work, this model is modified by including the effect of the dislocation field on the plastic zone of the crack tip and hence on the elastic field by introducing a plastic flow factor ρ, which represents the amount of blunting of the crack tip. The Levenberg-Marquardt (L-M) nonlinear least squares method was used to solve for the stress intensity factors. To verify the accuracy of this modified CJP model, the theoretical and experimental plastic zone errors before and after modification were compared, and the variation trends of the stress intensity factors and the plastic flow factor ρ were analysed. The results show that the CJP model, with the introduction of ρ, exhibits a good blunting trend. In the low plasticity state, the modified model can accurately describe the experimental plastic zone, and the modified stress intensity factors are more accurate, which proves the effectiveness of dislocation correction. This plastic flow correction provides a more accurate crack tip field model and improves the CJP crack growth relationship.
Pre-research on Enhanced Heat Transfer Method for Special Vehicles at High Altitude Based on Machine Learning
Chunming Li, Xiaoxia Sun, Hongyang Gao, Yu Zhang
2023, 36: 48. doi: 10.1186/s10033-023-00873-x
[Abstract](126) [FullText HTML] (110) [PDF 2890KB](2)
Abstract:
The performance of an integrated thermal management system significantly influences the stability of special-purpose vehicles; thus, enhancing the heat transfer of the radiator is of great significance. Common research methods for radiators include fluid mechanics numerical simulations and experimental measurements, both of which are time-consuming and expensive. Applying the surrogate model to the analysis of the flow and heat transfer in louvered fins can effectively reduce the computational cost and obtain more data. A simplified louvered-fin heat transfer unit was established, and computational fluid dynamics (CFD) simulations were conducted to obtain the flow and heat transfer characteristics of the geometric structure. A three-factor and six-level orthogonal design was established with three structural parameters: angle θ, length a, and pitch Lp of the louvered fins. The results of the orthogonal design were subjected to a range analysis, and the effects of the three parameters θ, a, and Lp on the j, f, and JF factors were obtained. Accordingly, a proxy model of the heat transfer performance for louvered fins was established based on the artificial neural network algorithm, and the model was trained with the data obtained by the orthogonal design. Finally, the fin structure with the largest JF factor was realized. Compared with the original model, the optimized model improved the heat transfer factor j by 2.87%, decreased the friction factor f by 30.4%, and increased the comprehensive factor JF by 15.7%.
An Energy Efficient Control Strategy for Electric Vehicle Driven by In-Wheel-Motors Based on Discrete Adaptive Sliding Mode Control
Han Zhang, Changzhi Zhou, Chunyan Wang, Wanzhong Zhao
2023, 36: 58. doi: 10.1186/s10033-023-00878-6
[Abstract](77) [FullText HTML] (83) [PDF 3157KB](0)
Abstract:
This paper presents an energy-efficient control strategy for electric vehicles (EVs) driven by in-wheel-motors (IWMs) based on discrete adaptive sliding mode control (DASMC). The nonlinear vehicle model, tire model and IWM model are established at first to represent the operation mechanism of the whole system. Based on the modeling, two virtual control variables are used to represent the longitudinal and yaw control efforts to coordinate the vehicle motion control. Then DASMC method is applied to calculate the required total driving torque and yaw moment, which can improve the tracking performance as well as the system robustness. According to the vehicle nonlinear model, the additional yaw moment can be expressed as a function of longitudinal and lateral tire forces. For further control scheme development, a tire force estimator using an unscented Kalman filter is designed to estimate real-time tire forces. On these bases, energy efficient torque allocation method is developed to distribute the total driving torque and differential torque to each IWM, considering the motor energy consumption, the tire slip energy consumption, and the brake energy recovery. Simulation results of the proposed control strategy using the co-platform of Matlab/Simulink and CarSim® demonstrate that it can accomplish vehicle motion control in a coordinated and economic way.
A Combined Reinforcement Learning and Model Predictive Control for Car-Following Maneuver of Autonomous Vehicles
Liwen Wang, Shuo Yang, Kang Yuan, Yanjun Huang, Hong Chen
2023, 36: 80. doi: 10.1186/s10033-023-00904-7
[Abstract](24) [FullText HTML] (22) [PDF 3200KB](1)
Abstract:
Model predictive control is widely used in the design of autonomous driving algorithms. However, its parameters are sensitive to dynamically varying driving conditions, making it difficult to be implemented into practice. As a result, this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller. Specifically, the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller. In this method, a risk threshold model is proposed to classify the risk level of the scenes based on the scene features, and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios. The proposed algorithm is compared to a pure model predictive controller in car-following case. According to the results, the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations, showing a good scenario adaptability with safety guaranteed.
Energy-Saving and Punctuality Combined Velocity Planning for the Autonomous-Rail Rapid Tram with Enhanced Pseudospectral Method
Jinxiang Wang, Dongming Han, Yongjun Yan, Neng Liu, Ning Sun, Guodong Yin
2023, 36: 82. doi: 10.1186/s10033-023-00891-9
[Abstract](25) [FullText HTML] (23) [PDF 3683KB](2)
Abstract:
Autonomous-rail rapid transit (ART) is a new medium-capacity rapid transportation system with punctuality, comfort and convenience, but low-cost construction. Combined velocity planning is a critical approach to meet the requirements of energy-saving and punctuality. An ART velocity pre-planning and re-planning strategy based on the combination of punctuality dynamic programming (PDP) and pseudospectral (PS) method is proposed in this paper. Firstly, the longitudinal dynamics model of ART is established by a multi-particle model. Secondly, the PDP algorithm with global optimal characteristics is adopted as the pre-planning strategy. A model for determining the number of collocation points of the real-time PS method is proposed to improve the energy-saving effect while ensuring computation efficiency. Then the enhanced PS method is utilized to design the velocity re-planning strategy. Finally, simulations are conducted in the typical scenario with sloping roads, traffic lights, and intrusion of the pedestrian. The simulation results indicate that the ART with the proposed velocity trajectory optimization strategy can meet the punctuality requirement, and obtain better economy efficiency compared with the punctuality green light optimal speed advisory (PGLOSA).
Method for Evaluating Bolt Competitive Failure Life Under Composite Excitation
Guangwu Yang, Long Yang, Han Zhao, Haoxu Ding, Bing Yang, Shoune Xiao
2023, 36: 86. doi: 10.1186/s10033-023-00923-4
[Abstract](22) [FullText HTML] (23) [PDF 3021KB](0)
Abstract:
In this study, the competitive failure mechanism of bolt loosening and fatigue is elucidated via competitive failure tests on bolts under composite excitation. Based on the competitive failure mechanism, the mode prediction model and "load ratio—life prediction curve" (ξN curve) of the bolt competitive failure are established. Given the poor correlation of the ξN curve, an evaluation model of the bolt competitive failure life is proposed based on Miner's linear damage accumulation theory. Based on the force analysis of the thread surface and simulation of the bolt connection under composite excitation, a theoretical equation of the bolt competitive failure life is established to validate the model for evaluating the bolt competitive failure life. The results reveal that the proposed model can accurately predict the competitive failure life of bolts under composite excitation, and thereby, it can provide guidance to engineering applications.
Combined Estimation of Vehicle Dynamic State and Inertial Parameter for Electric Vehicles Based on Dual Central Difference Kalman Filter Method
Xianjian Jin, Junpeng Yang, Liwei Xu, Chongfeng Wei, Zhaoran Wang, Guodong Yin
2023, 36: 91. doi: 10.1186/s10033-023-00914-5
[Abstract](43) [FullText HTML] (38) [PDF 3549KB](1)
Abstract:
Distributed drive electric vehicles (DDEVs) possess great advantages in the viewpoint of fuel consumption, environment protection and traffic mobility. Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size, and inertial parameter has seldom been tackled and systematically estimated. This paper presents a dual central difference Kalman filter (DCDKF) where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters, such as vehicle sideslip angle, vehicle mass, vehicle yaw moment of inertia, the distance from the front axle to centre of gravity. The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs. The four-wheel nonlinear vehicle dynamics estimation model considering payload variations, Pacejka tire model, wheel and motor dynamics model is developed, the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory. To address system nonlinearities in vehicle dynamics estimation, the DCDKF and dual extended Kalman filter (DEKF) are also investigated and compared. Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-Carsim®. The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions. This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.
Hierarchical CNNPID Based Active Steering Control Method for Intelligent Vehicle Facing Emergency Lane-Changing
Wensa Wang, Jun Liang, Chaofeng Pan, Long Chen
2023, 36: 100. doi: 10.1186/s10033-023-00924-3
[Abstract](23) [FullText HTML] (23) [PDF 3720KB](0)
Abstract:
To resolve the response delay and overshoot problems of intelligent vehicles facing emergency lane-changing due to proportional-integral-differential (PID) parameter variation, an active steering control method based on Convolutional Neural Network and PID (CNNPID) algorithm is constructed. First, a steering control model based on normal distribution probability function, steady constant radius steering, and instantaneous lane-change-based active for straight and curved roads is established. Second, based on the active steering control model, a three-dimensional constraint-based fifth-order polynomial equation lane-change path is designed to address the stability problem with supersaturation and sideslip due to emergency lane changing. In addition, a hierarchical CNNPID Controller is constructed which includes two layers to avoid collisions facing emergency lane changing, namely, the lane change path tracking PID control layer and the CNN control performance optimization layer. The scaled conjugate gradient backpropagation-based forward propagation control law is designed to optimize the PID control performance based on input parameters, and the elastic backpropagation-based module is adopted for weight correction. Finally, comparison studies and simulation/real vehicle test results are presented to demonstrate the effectiveness, significance, and advantages of the proposed controller.
Research Highlight
Revitalizing Human-Robot Interaction: Phygital Twin Driven Robot Avatar for China–Sweden Teleoperation
Huiying Zhou, Honghao Lv, Ruohan Wang, Haiteng Wu, Geng Yang
2023, 36. doi: 10.1186/s10033-023-00956-9
[Abstract](35) [FullText HTML] (31) [PDF 1117KB](2)
Abstract:
Review
Effects of Electric and Magnetic Treatments on Microstructures of Solid Metals: A Review
Yanli Song, Wenlin Wu, Yongqing Yu, Lin Hua
2023, 36. doi: 10.1186/s10033-023-00961-y
[Abstract](42) [FullText HTML] (35) [PDF 3361KB](2)
Abstract:
An external electric or magnetic field can transfer high-intensity energy directly to the electronic scale of materials, and change the spin, energy level arrangement and trajectory of electrons. These changes produce tremendous and profound impacts on the microstructure and mechanical properties of metal materials, which may be impossible with traditional technologies. This paper reviews the effects of electric or magnetic field on the microstructures of solid metals including phase transformation, precipitation, recrystallization, dislocations and so on. Based on the existing research results, the mechanisms of these effects have been discussed. Additionally, some typical applications of electric and magnetic treatments on solid metals have been described and the challenges in this field have also been discussed.
Review of Design of Process Parameters for Squeeze Casting
Jianxin Deng, Bin Xie, Dongdong You, Haibin Huang
2023, 36. doi: 10.1186/s10033-023-00979-2
[Abstract](45) [FullText HTML] (34) [PDF 1706KB](2)
Abstract:
Squeeze casting (SC) is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters. Unfortunately, a universal efficient method for the determination of optimal process parameters is still unavailable. In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters, by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software, manual reading and statistical analysis, the current state and characteristics of the research methods used for the determination of SC process parameters are summarized. The literature data show that the number of publications in the literature related to the design of SC process parameters generally trends upward albeit with significant fluctuations. Analysis of the research focus shows that both "mechanical properties" and "microstructure" are the two main subjects in the studies of SC process parameters. With regard to materials, aluminum alloys have been extensively studied. Five methods have been used to obtain SC process parameters: Physical experiments, numerical simulation, modeling optimization, formula calculation, and the use of empirical values. Physical experiments are the main research methods. The main methods for designing SC process parameters are divided into three categories: Fully experimental methods, optimization methods that involve modeling based on experimental data, and theoretical calculation methods that involve establishing an analytical formula. The research characteristics and shortcomings of each method were analyzed. Numerical simulations and model-based optimization have become the new required methods. Considering the development needs and data-driven trends of the SC process, suggestions for the development of SC process parameter research have been proposed.
Multiscale Theories and Applications: From Microstructure Design to Macroscopic Assessment for Carbon Nanotubes Networks
Jiachao Ji, Yulin Jin, Anping Hua, Chunhua Zhu, Junhua Zhao
2023, 36: 1. doi: 10.1186/s10033-022-00826-w
[Abstract](37) [FullText HTML] (33) [PDF 6517KB](0)
Abstract:
Carbon nanotube (CNT) networks enable CNTs to be used as building blocks for synthesizing novel advanced materials, thus taking full advantage of the superior properties of individual CNTs. Multiscale analyses have to be adopted to study the load transfer mechanisms of CNT networks from the atomic scale to the macroscopic scale due to the huge computational cost. Among them, fully resolved structural features include the graphitic honeycomb lattice (atomic), inter-tube stacking (nano) and assembly (meso) of CNTs. On an atomic scale, the elastic properties, ultimate stresses, and failure strains of individual CNTs with distinct chiralities and radii are obtained under various loading conditions by molecular mechanics. The dependence of the cohesive energies on spacing distances, crossing angles, size and edge effects between two CNTs is analyzed through continuum modeling in nanoscale. The mesoscale models, which neglect the atomic structures of individual CNTs but retain geometrical information about the shape of CNTs and their assembly into a network, have been developed to study the multi-level mechanism of material deformation and microstructural evolution in CNT networks under stretching, from elastic elongation, strengthening to damage and failure. This paper summarizes the multiscale theories mentioned above, which should provide insight into the optimal assembling of CNT network materials for elevated mechanical performance.
Research Progress on the Solder Joint Reliability of Electronics Using in Deep Space Exploration
Qilong Guan, Chunjin Hang, Shengli Li, Dan Yu, Ying Ding, Xiuli Wang, Yanhong Tian
2023, 36: 22. doi: 10.1186/s10033-023-00834-4
[Abstract](122) [FullText HTML] (106) [PDF 2795KB](1)
Abstract:
The spacecraft for deep space exploration missions will face extreme environments, including cryogenic temperature, intense radiation, wide-range temperature variations and even the combination of conditions mentioned above. Harsh environments will lead to solder joints degradation or even failure, resulting in damage to onboard electronics. The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices, but effectively improve the overall reliability of spacecraft, which is of great significance to the aviation industry. In this paper, we review the reliability research on SnPb solder alloys, Sn-based lead-free solder alloys and In-based solder alloys in extreme environments, and try to provide some suggestions for the follow-up studies, which focus on solder joint reliability under extreme environments.
Evolution and Development Trend Prospect of Metal Milling Equipment
Jie Wen, Fugui Xie, Xinjun Liu, Yi Yue
2023, 36: 33. doi: 10.1186/s10033-023-00865-x
[Abstract](131) [FullText HTML] (112) [PDF 2988KB](0)
Abstract:
The world is currently undergoing profound changes which have never happened within the past century. Global competition in the technology and industry fields is becoming increasingly fierce. The strategic competition of the major powers further focuses on the manufacturing industry. Developed countries such as the United States, Germany, and Japan have successively put forward strategic plans such as “re-industrialization” and “return of manufacturing industry”, aiming to seize the commanding heights of a new round of global high-end technology competition and expand international market share. Standing at the historic intersection of a new round of scientific and technological revolution and China’s accelerated high-quality development, the “14th Five-Year Plan” clearly pointed out that intelligent manufacturing is the main development trend to promote China’s manufacturing to the medium-high end of the global value chain. This reflects the importance of advanced manufacturing for national strategic layout. To better grasp the development direction of advanced manufacturing equipment, the development process and current application status of manufacturing equipment are summarized, and thereafter the characteristics of manufacturing equipment in different development stages of the manufacturing industry are analyzed. Finally, the development trend of advanced milling equipment is prospected.
Research Progress in Preparation and Application of Photonic Crystals
Xiaoren Lv, Bing Zhong, Yanfei Huang, Zhiguo Xing, Haidou Wang, Weiling Guo, Xueting Chang, Zhinan Zhang
2023, 36: 39. doi: 10.1186/s10033-023-00836-2
[Abstract](26) [FullText HTML] (29) [PDF 2755KB](0)
Abstract:
Photonic crystals are periodic structural materials that have an impact on the propagation properties of photons. Due to their excellent optical, electrical and magnetic properties, their advantages and potential for applications in the above areas are gradually emerging. Therefore, an increasing number of researchers have focused on photonic crystals. In this paper, the characteristics of biological photonic crystal structures, such as those found in butterfly wings, sea mouse bristles, peacock feathers, melon jellyfish epidermal cells, and weevil exoskeletons, are described. The preparation methods of photonic crystals are systematically summarized (including the template method, self-assembly technology, electron beam evaporation coating technology, chemical vapor deposition technology, femtosecond laser two-photon technology, spin coating technology, and a variety of technology mixing), and the characteristics, advantages, and disadvantages of the different methods are compared. Furthermore, the development of photonic crystals in the field of sensors, solar cells, filters, and infrared stealth is discussed, demonstrateing the great development potential of photonic crystals. It is concluded that the realization of photonic crystals with high precision, high sensitivity, angle independence, and large-area uniform preparation is a key problem requiring urgent solution. Moreover, photonic crystals have potential development prospects in the fields of equipment stealth, new concept weapons, production, an daily life.
Review of Design and Control Optimization of Axial Flux PMSM in Renewable-energy Applications
Jianfei Zhao, Xiaoying Liu, Shuang Wang, Lixiao Zheng
2023, 36: 45. doi: 10.1186/s10033-023-00868-8
[Abstract](145) [FullText HTML] (106) [PDF 2044KB](1)
Abstract:
Axial flux permanent magnet synchronous motors (AFPMSMs) have been widely used in wind-power generation, electric vehicles, aircraft, and other renewable-energy applications owing to their high power density, operating efficiency, and integrability. To facilitate comprehensive research on AFPMSM, this article reviews the developments in the research on the design and control optimization of AFPMSMs. First, the basic topologies of AFPMSMs are introduced and classified. Second, the key points of the design optimization of core and coreless AFPMSMs are summarized from the aspects of parameter design, structure design, and material optimization. Third, because efficiency improvement is an issue that needs to be addressed when AFPMSMs are applied to electric or other vehicles, the development status of efficiency-optimization control strategies is reviewed. Moreover, control strategies proposed to suppress torque ripple caused by the small inductance of disc coreless permanent magnet synchronous motors (DCPMSMs) are summarized. An overview of the rotor-synchronization control strategies for disc contra-rotating permanent magnet synchronous motors (CRPMSMs) is presented. Finally, the current difficulties and development trends revealed in this review are discussed.
Sediment Erosion on Pelton Turbines: A Review
Xinfeng Ge, Jie Sun, Dongdong Chu, Juan Liu, Ye Zhou, Hui Zhang, Lei Zhang, Huixiang Chen, Kan Kan, Maxime Binama, Yuan Zheng
2023, 36: 64. doi: 10.1186/s10033-023-00880-y
[Abstract](30) [FullText HTML] (29) [PDF 4848KB](1)
Abstract:
The Pelton turbine has been widely used to develop high-head water resources with sediments because of its advantages in life cycle costs. When a flood or monsoon season occurs, the sediment concentration in the river increases suddenly, causing severe erosion to the nozzle, needle, and runner of Pelton turbines. After decades of development, researchers have developed practical engineering experience to reduce the sediment concentration of the flow through the turbine and ensure the safety and efficiency of power generation. Research on the mechanism of sediment erosion, development of anti-erosion materials, and establishment of erosion prediction models have attracted scholarly interest in recent years. Extensive research has been conducted to determine a complete and valuable syndication erosion model. However, owing to the complexity of the flow and wear mechanisms, the influence of specific parameters of erosion and the syndication effect is still difficult to determine. Computational fluid dynamics and erosion monitoring technology have also been evaluated and applied. This paper presents a comprehensive review of the erosion of Pelton turbines, some of the latest technical methods, and possible future development directions.
Research article
Simulation Analysis of Torsion Beam Hydroforming Based on the Fluid-Solid Coupling Method
Yu Huang, Jian Li, Jiachun Yang, Yongdong Peng, Weixuan Zhang
2023, 36: 3. doi: 10.1186/s10033-022-00819-9
[Abstract](108) [FullText HTML] (94) [PDF 3963KB](0)
Abstract:
Hydroformed parts are widely used in industrial automotive parts because of their higher stiffness and fatigue strength and reduced weight relative to their corresponding cast and welded parts. This paper reports a hydraulic-forming experimental platform for rectangular tube fittings that was constructed to conduct an experiment on the hydraulic forming of rectangular tube fittings. A finite element model was established on the basis of the fluid–solid coupling method and simulation analysis. The correctness of the simulation analysis and the feasibility of the fluid–solid coupling method for hydraulic forming simulation analysis were verified by comparing the experimental results with the simulation results. On the basis of the simulation analysis of the hydraulic process of the torsion beam using the fluid–solid coupling method, a sliding mold suitable for the hydroforming of torsion beams was designed for its structural characteristics. The effects of fluid characteristics, shaping pressure, axial feed rate, and friction coefficient on the wall thicknesses of torsions beams during formation were investigated. Fluid movement speed was related to tube deformation. Shaping pressure had a significant effect on rounded corners and straight edges. The axial feed speed was increased, and the uneven distribution of wall thicknesses was effectively improved. Although the friction coefficient had a nonsignificant effect on the wall thickness of the ladder-shaped region, it had a significant influence on a large deformation of wall thickness in the V-shaped area. In this paper, a method of fluid-solid coupling simulation analysis and sliding die is proposed to study the high pressure forming law in torsion beam.
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
Min Cheng, Bolin Sun, Ruqi Ding, Bing Xu
2023, 36: 29. doi: 10.1186/s10033-023-00861-1
[Abstract](112) [FullText HTML] (83) [PDF 3212KB](0)
Abstract:
In mobile machinery, hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level, but diversified control functions (e.g., power limitation and pressure cut-off) are integrated into the electronic controller only from the pump level, leading to the potential instability of the overall system. To solve this problem, a multi-mode electrohydraulic load sensing (MELS) control scheme is proposed especially considering the switching stability from the system level, which includes four working modes of flow control, load sensing, power limitation, and pressure control. Depending on the actual working requirements, the switching rules for the different modes and the switching direction (i.e., the modes can be switched bilaterally or unilaterally) are defined. The priority of different modes is also defined, from high to low: pressure control, power limitation, load sensing, and flow control. When multiple switching rules are satisfied at the same time, the system switches to the control mode with the highest priority. In addition, the switching stability between flow control and pressure control modes is analyzed, and the controller parameters that guarantee the switching stability are obtained. A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator. The results show that the MELS controller can achieve the control functions of proper flow supplement, power limitation, and pressure cut-off, which has good stability performance when switching between different control modes. This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions.
Dynamic Analysis and Parametric Optimization of Telescopic Tubular Mast Applied on Solar Sail
Chenyang Ji, Jinguo Liu, Chenchen Wu, Pengyuan Zhao, Keli Chen
2023, 36: 43. doi: 10.1186/s10033-023-00869-7
[Abstract](381) [FullText HTML] (301) [PDF 2000KB](18)
Abstract:
Large-scale solar sails can provide power to spacecraft for deep space exploration. A new type of telescopic tubular mast (TTM) driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure. Compared with the traditional TTM, it has a small size, light weight, high extension ratio, and simple structure. The anti-blossoming and self-unlocking structure of the proposed TTM was described. We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density, and the simulation results showed good consistency. The dynamic equation was derived based on the equivalent model, and the effects of different factors on the vibration characteristics of the TTM were analyzed. The performance parameters were optimized based on a multiobjective genetic algorithm, and prototype production and load experiments were conducted. The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails, which is valuable for future deep space exploration.
Study of the Judder Characteristics of Friction Material for an Automobile Clutch and Test Verification
Zhengfeng Yan, Hangsheng Li, Hairui Lei, Maoqing Xie, Leigang Wang
2023, 36: 53. doi: 10.1186/s10033-023-00864-y
[Abstract](306) [FullText HTML] (251) [PDF 3415KB](3)
Abstract:
The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline. In this research, the judder characteristics of automobile clutch friction materials and experimental verification are studied. First, considering the stick-slip phenomenon in the clutch engagement process, a detailed 9-degrees-of-freedom (DOF) model including the body, each cylinder of the engine, clutch and friction lining, torsional damper, transmission and other driveline parts is established, and the calculation formula of friction torque in the clutch engagement process is determined. Second, the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed, and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software. Finally, judder bench test equipment and a corresponding damping test program are developed, and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed. After a large number of tests, the evaluation basis of the test is determined. The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal. When the friction gradient value is less than −0.005 s/m, the judder signal of the measured clutch cannot be completely attenuated, and the judder phenomenon occurs. When the friction gradient is greater than − 0.005 s/m, the judder signal can be significantly suppressed and the system connection tends to be stable.
Experimental Study on the Reduction Effect of Pit Texture on Disassembly Damage for Interference Fit
Dan Zhou, Yi Xu, Xin Gao, Haihong Huang, Songjiang Lv
2023, 36: 55. doi: 10.1186/s10033-023-00885-7
[Abstract](120) [FullText HTML] (98) [PDF 2264KB](0)
Abstract:
After remanufacturing disassembly, several kinds of friction damages can be found on the mating surface of interference fit. These damages should be repaired and the cost is closely related to the severity of damages. Inspired by the excellent performance of surface texture in wear reduction, 5 shapes of pit array textures are added to the specimens' surface to study their reduction effect of disassembly damage for interference fit. The results of disassembly experiments show that the order of influence of texture parameters on disassembly damage is as follows: equivalent circle diameter of single texture, texture shape and texture surface density. The influence of equivalent circle diameter of single texture and texture shape are obviously more significant than that of texture surface density. The circular texture with a surface density of 30% and a diameter of 100 μm shows an excellent disassembly damage reduction effect because of its perfect ability of abrasive particle collection. And the probability of disassembly damage formation and evolution is also relatively small on this kind of textured surface. Besides, the load-carrying capacity of interference fit with the excellent texture is confirmed by load-carrying capacity experiments. The results show that the load-carrying capacity of the excellent texture surface is increased about 40% compared with that of without texture. This research provides a potential approach to reduce disassembly damage for interference fit.
Design and Implementation of a Battery Big Data Platform Through Intelligent Connected Electric Vehicles
Rui Xiong, Baoqiang Zhu, Kui Zhang, Yanzhou Duan, Fengchun Sun
2023, 36: 56. doi: 10.1186/s10033-023-00886-6
[Abstract](325) [FullText HTML] (258) [PDF 2320KB](2)
Abstract:
The development of a battery management algorithm is highly dependent on high-quality battery operation data, especially the data in extreme conditions such as low temperatures. The data in faults are also essential for failure and safety management research. This study developed a battery big data platform to realize vehicle operation, energy interaction and data management. First, we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously. Second, charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle. Third, the data transmission network was designed, a real-time monitoring interface was developed, and the self-developed battery management system was used to measure, collect, upload, and store battery operation data in real time. Finally, experimental validation was performed on the platform. Results demonstrate the efficiency and reliability of the platform. Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
Design and Analysis of a Novel Shoulder Exoskeleton Based on a Parallel Mechanism
Lianzheng Niu, Sheng Guo, Majun Song, Yifan Wu, Haibo Qu
2023, 36: 65. doi: 10.1186/s10033-023-00883-9
[Abstract](146) [FullText HTML] (97) [PDF 2798KB](5)
Abstract:
Power-assisted upper-limb exoskeletons are primarily used to improve the handling efficiency and load capacity. However, kinematic mismatch between the kinematics and biological joints is a major problem in most existing exoskeletons, because it reduces the boosting effect and causes pain and long-term joint damage in humans. In this study, a shoulder augmentation exoskeleton was designed based on a parallel mechanism that solves the shoulder dislocation problem using the upper arm as a passive limb. Consequently, the human–machine synergy and wearability of the exoskeleton system were improved without increasing the volume and weight of the system. A parallel mechanism was used as the structural body of the shoulder joint exoskeleton, and its workspace, dexterity, and stiffness were analyzed. Additionally, an ergonomic model was developed using the principle of virtual work, and a case analysis was performed considering the lifting of heavy objects. The results show that the upper arm reduces the driving force requirement in coordinated motion, enhances the load capacity of the system, and achieves excellent assistance.
Special Issue on Enhanced Heat Transfer Technology Based on Emission Reduction and Carbon Reduction in Cutting and Grinding
Tribological Performance of Different Concentrations of Al2O3 Nanofluids on Minimum Quantity Lubrication Milling
Xiufang Bai, Juan Jiang, Changhe Li, Lan Dong, Hafiz Muhammad Ali, Shubham Sharma
2023, 36: 11. doi: 10.1186/s10033-022-00830-0
[Abstract](32) [FullText HTML] (33) [PDF 4234KB](0)
Abstract:
Nanofluid minimum quantity lubrication (NMQL) is a green processing technology. Cottonseed oil is suitable as base oil because of excellent lubrication performance, low freezing temperature, and high yield. Al2O3 nanoparticles improve not only the heat transfer capacity but also the lubrication performance. The physical and chemical properties of nanofluid change when Al2O3 nanoparticles are added. However, the effects of the concentration of nanofluid on lubrication performance remain unknown. Furthermore, the mechanisms of interaction between Al2O3 nanoparticles and cottonseed oil are unclear. In this research, nanofluid is prepared by adding different mass concentrations of Al2O3 nanoparticles (0, 0.2%, 0.5%, 1%, 1.5%, and 2% wt) to cottonseed oil during minimum quantity lubrication (MQL) milling 45 steel. The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters (milling force, specific energy) and micro-evaluation parameters (surface roughness, micro morphology, contact angle). The result show that the specific energy is at the minimum (114 J/mm3), and the roughness value is the lowest (1.63 μm) when the concentration is 0.5 wt%. The surfaces of the chip and workpiece are the smoothest, and the contact angle is the lowest, indicating that the tribological properties are the best under 0.5 wt%. This research investigates the intercoupling mechanisms of Al2O3 nanoparticles and cottonseed base oil, and acquires the optimal Al2O3 nanofluid concentration to receive satisfactory tribological properties.
Multi-physical Modeling and Adjusting for Ultrasonic Assisted Soft Abrasive Flow Processing
Yesha Ni, Yunfeng Tan, Dapeng Tan
2023, 36: 75. doi: 10.1186/s10033-023-00907-4
[Abstract](26) [FullText HTML] (23) [PDF 2152KB](1)
Abstract:
The polishing efficiency of the soft abrasive flow (SAF) method is low, which is not in line with the concept of carbon emission reduction in industrial production. To address the above issue, a two-phase fluid multi-physics modeling method for ultrasonic-assisted SAF processing is proposed. The acoustics-fluid coupling mechanic model based on the realizable k-ε model and Helmholtz equation is built to analyze the cavitation effect. The results show that the proposed modeling and solution method oriented to ultrasonic-assisted SAF processing have better revealed the flow field evolution mechanism. The turbulence kinetic energy at different ultrasonic frequencies and amplitudes is studied. Simulation results show that the ultrasonic vibration can induce a cavitation effect in the constrained flow channel and promote the turbulence intensity and uniformity of the abrasive flow. A set of comparative polishing experiments with or without ultrasonic vibration are conducted to explore the performance of the proposed method. It can be found that the ultrasonic-assisted SAF method can improve the machining efficiency and uniformity, to achieve the purpose of carbon emission reduction. The relevant result can offer a helpful reference for the SAF method.
Vegetable Oil-Based Nanolubricants in Machining: From Physicochemical Properties to Application
Xiaotian Zhang, Changhe Li, Zongming Zhou, Bo Liu, Yanbin Zhang, Min Yang, Teng Gao, Mingzheng Liu, Naiqing Zhang, Zafar Said, Shubham Sharma, Hafiz Muhammad Ali
2023, 36: 76. doi: 10.1186/s10033-023-00895-5
[Abstract](21) [FullText HTML] (22) [PDF 4768KB](0)
Abstract:
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining. However, traditional mineral oil-based cutting fluids no longer meet modern machining's health and environmental protection requirements. As a renewable, pollution-free alternative with excellent processing characteristics, vegetable oil has become an inevitable replacement. However, vegetable oil lacks oxidation stability, extreme pressure, and antiwear properties, which are essential for machining requirements. The physicochemical characteristics of vegetable oils and the improved methods' application mechanism are not fully understood. This study aims to investigate the effects of viscosity, surface tension, and molecular structure of vegetable oil on cooling and lubricating properties. The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed. The study further investigates the application mechanism and performance of chemical modification and antioxidant additives. The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175 ℃. The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants. Finally, the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition. The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling. It is expected to promote sustainable development in the manufacturing industry.
Tribological Mechanism of Graphene and Ionic Liquid Mixed Fluid on Grinding Interface under Nanofluid Minimum Quantity Lubrication
Dexiang Wang, Yu Zhang, Qiliang Zhao, Jingliang Jiang, Guoliang Liu, Changhe Li
2023, 36: 78. doi: 10.1186/s10033-023-00894-6
[Abstract](39) [FullText HTML] (35) [PDF 5305KB](1)
Abstract:
Graphene has superhigh thermal conductivity up to 5000 W/(m·K), extremely thin thickness, superhigh mechanical strength and nano-lamellar structure with low interlayer shear strength, making it possess great potential in minimum quantity lubrication (MQL) grinding. Meanwhile, ionic liquids (ILs) have higher thermal conductivity and better thermal stability than vegetable oils, which are frequently used as MQL grinding fluids. And ILs have extremely low vapor pressure, thereby avoiding film boiling in grinding. These excellent properties make ILs also have immense potential in MQL grinding. However, the grinding performance of graphene and ionic liquid mixed fluid under nanofluid minimum quantity lubrication (NMQL), and its tribological mechanism on abrasive grain/workpiece grinding interface, are still unclear. This research firstly evaluates the grinding performance of graphene and ionic liquid mixed nanofluids (graphene/IL nanofluids) under NMQL experimentally. The evaluation shows that graphene/IL nanofluids can further strengthen both the cooling and lubricating performances compared with MQL grinding using ILs only. The specific grinding energy and grinding force ratio can be reduced by over 40% at grinding depth of 10 μm. Workpiece machined surface roughness can be decreased by over 10%, and grinding temperature can be lowered over 50 ℃ at grinding depth of 30 μm. Aiming at the unclear tribological mechanism of graphene/IL nanofluids, molecular dynamics simulations for abrasive grain/workpiece grinding interface are performed to explore the formation mechanism of physical adsorption film. The simulations show that the grinding interface is in a boundary lubrication state. IL molecules absorb in groove-like fractures on grain wear flat face to form boundary lubrication film, and graphene nanosheets can enter into the grinding interface to further decrease the contact area between abrasive grain and workpiece. Compared with MQL grinding, the average tangential grinding force of graphene/IL nanofluids can decrease up to 10.8%. The interlayer shear effect and low interlayer shear strength of graphene nanosheets are the principal causes of enhanced lubricating performance on the grinding interface. EDS and XPS analyses are further carried out to explore the formation mechanism of chemical reaction film. The analyses show that IL base fluid happens chemical reactions with workpiece material, producing FeF2, CrF3, and BN. The fresh machined surface of workpiece is oxidized by air, producing NiO, Cr2O3 and Fe2O3. The chemical reaction film is constituted by fluorides, nitrides and oxides together. The combined action of physical adsorption film and chemical reaction film make graphene/IL nanofluids obtain excellent grinding performance.
Assessment of Lubrication Property and Machining Performance of Nanofluid Composite Electrostatic Spraying (NCES) Using Different Types of Vegetable Oils as Base Fluids of External Fluid
Yu Su, Zepeng Chu, Le Gong, Bin Wang, Zhiqiang Liu
2023, 36: 94. doi: 10.1186/s10033-023-00929-y
[Abstract](34) [FullText HTML] (34) [PDF 6305KB](0)
Abstract:
The current study of minimum quantity lubrication (MQL) concentrates on its performance improvement. By contrast with nanofluid MQL and electrostatic atomization (EA), the proposed nanofluid composite electrostatic spraying (NCES) can enhance the performance of MQL more comprehensively. However, it is largely influenced by the base fluid of external fluid. In this paper, the lubrication property and machining performance of NCES with different types of vegetable oils (castor, palm, soybean, rapeseed, and LB2000 oil) as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids. The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances. The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid, NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7% and 7.6%-26.5%, respectively. The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2% and 3.6%-11.2% lower than those for NCES with other vegetable oils as the base fluids of external fluid, respectively. When LB2000/multi-walled carbon nanotube (MWCNT) water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1, NCES showed the best milling performance. This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.
Grinding Characteristics of MoS2-Coated Brazed CBN Grinding Wheels in Dry Grinding of Titanium Alloy
Junshuai Zhao, Biao Zhao, Wenfeng Ding, Bangfu Wu, Ming Han, Jiuhua Xu, Guoliang Liu
2023, 36: 109. doi: 10.1186/s10033-023-00936-z
[Abstract](41) [FullText HTML] (34) [PDF 4507KB](0)
Abstract:
As an important green manufacturing process, dry grinding has problems such as high grinding temperature and insufficient cooling capacity. Aiming at the problems of sticking and burns in dry grinding of titanium alloys, grinding performance evaluation of molybdenum disulfide (MoS2) solid lubricant coated brazed cubic boron carbide (CBN) grinding wheel (MoS2-coated CBN wheel) in dry grinding titanium alloys was carried out. The lubrication mechanism of MoS2 in the grinding process is analyzed, and the MoS2-coated CBN wheel is prepared. The results show that the MoS2 solid lubricant can form a lubricating film on the ground surface and reduce the friction coefficient and grinding force. Within the experimental parameters, normal grinding force decreased by 42.5%, and tangential grinding force decreased by 28.1%. MoS2 lubricant can effectively improve the heat dissipation effect of titanium alloy grinding arc area. Compared with common CBN grinding wheel, MoS2-coated CBN wheel has lower grinding temperature. When the grinding depth reaches 20 μm, the grinding temperature decreased by 30.5%. The wear of CBN grains of grinding wheel were analyzed by mathematical statistical method. MoS2 lubricating coating can essentially decrease the wear of grains, reduce the adhesion of titanium alloy chip, prolong the service life of grinding wheel, and help to enhance the surface quality of workpiece. This research provides high-quality and efficient technical support for titanium alloy grinding.
Material Removal Characteristics of Single-Crystal 4H-SiC Based on Varied-Load Nanoscratch Tests
Kun Tang, Wangping Ou, Cong Mao, Jie Liang, Moke Zhang, Mingjun Zhang, Yongle Hu
2023, 36: 111. doi: 10.1186/s10033-023-00944-z
[Abstract](20) [FullText HTML] (22) [PDF 8625KB](0)
Abstract:
Single-crystal silicon carbide (SiC) has been widely applied in the military and civil fields because of its excellent physical and chemical properties. However, as is typical in hard-to-machine materials, the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining. In this study, single- and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter. The material removal characteristics and cracks under different planes, indenter directions, normal loading rates, and scratch intervals were analyzed using SEM, FIB, and a 3D profilometer, and the mechanisms of material removal and crack propagation were studied. The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining. The normal loading rate had little effect on the scratch depth, but a lower loading rate increased the ductile region and critical depth of transition. Additionally, the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval, the status of scratches and chips changed, and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation. The calculated and experimental values of the median crack depth also showed good consistency and relativity. Therefore, this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.
Enhanced Heat Transfer Technology Based on Emission Reduction and Carbon Reduction in Cutting and Grinding
Changhe Li, Yanbin Zhang, Shubham Sharma
2023, 36: 112. doi: 10.1186/s10033-023-00947-w
[Abstract](38) [FullText HTML] (33) [PDF 688KB](1)
Abstract:
Prediction of Grinding Force by an Electroplated Grinding Wheel with Orderly-Micro-Grooves
Cong Mao, Jiali Wang, Mingjun Zhang, Xincheng Wang, Yuanqiang Luo, Weidong Tang, Kun Tang, Zhuming Bi, Yongle Hu, Zhenheng Lin
2023, 36: 116. doi: 10.1186/s10033-023-00937-y
[Abstract](24) [FullText HTML] (23) [PDF 1990KB](0)
Abstract:
The ability to predict a grinding force is important to control, monitor, and optimize the grinding process. Few theoretical models were developed to predict grinding forces when a structured wheel was used in a grinding process. This paper aimed to establish a single-grit cutting force model to predict the ploughing, friction and cutting forces in a grinding process. It took into the consideration of actual topography of the grinding wheel, and a theoretical grinding force model for grinding hardened AISI 52100 by the wheel with orderly-micro-grooves was proposed. The model was innovative in the sense that it represented the random thickness of undeformed chips by a probabilistic expression, and it reflected the microstructure characteristics of the structured wheel explicitly. Note that the microstructure depended on the randomness of the protruding heights and distribution density of the grits over the wheel. The proposed force prediction model was validated by surface grinding experiments, and the results showed (1) a good agreement of the predicted and measured forces and (2) a good agreement of the changes of the grinding forces along with the changes of grinding parameters in the prediction model and experiments. This research proposed a theoretical grinding force model of an electroplated grinding wheel with orderly-micro-grooves which is accurate, reliable and effective in predicting grinding forces.
Smart Material
Parameters Calibration of the GISSMO Failure Model for SUS301L-MT
Tao Zhu, Haoxu Ding, Chao Wang, Yuxin Liu, Shoune Xiao, Guangwu Yang, Bing Yang
2023, 36: 20. doi: 10.1186/s10033-023-00844-2
[Abstract](103) [FullText HTML] (76) [PDF 3821KB](0)
Abstract:
With the development of the rail transit industry, more attention has been paid to the passive safety of rail vehicles. Structural damage is one of the main failure behaviors in a rail vehicle collision, but it has been paid little attention to in past research. In this paper, the quasi-static fracture experiments of SUS301L-MT under different stress states were carried out. The mechanical fracture properties of this material were studied, and the corresponding finite element simulation accuracy was improved to guide the design of vehicle crashworthiness. Through the tests, the fracture behavior of materials with wide stress triaxiality was obtained, and each specimen's fracture locations and fracture strains were determined. Parameters of a generalized incremental stress state dependent damage model (GISSMO) of the material were calibrated, and the model's accuracy was verified with test results from a 45° shear specimen. The GISSMO failure model accurately reflected the fracture characteristics of the material. The mesh dependency of this model was modified and discussed. The results show that the simulation agrees well with experimental data for the force-displacement curve after correction, but the strain distribution needs to be further studied and improved.
Fatigue Life Prediction for SiC/Al Materials Based on Path Planning Algorithm Considering Residual Stress
Wenqian Shang, Xintian Liu, Xu Wang, Xiaolan Wang
2023, 36: 24. doi: 10.1186/s10033-023-00843-3
[Abstract](81) [FullText HTML] (75) [PDF 1749KB](0)
Abstract:
To explore the influence of path deflection on crack propagation, a path planning algorithm is presented to calculate the crack growth length. The fatigue crack growth life of metal matrix composites (MMCs) is estimated based on an improved Paris formula. Considering the different expansion coefficient of different materials, the unequal shrinkage will lead to residual stress when the composite is molded and cooled. The crack growth model is improved by the modified stress ratio based on residual stress. The Dijkstra algorithm is introduced to avoid the cracks passing through the strengthening base and the characteristics of crack steps. This model can be extended to predict crack growth length for other similarly-structured composite materials. The shortest path of crack growth is simulated by using path planning algorithm, and the fatigue life of composites is calculated based on the shortest path and improved model. And the residual stress caused by temperature change is considered to improve the fatigue crack growth model in the material. The improved model can well predict the fatigue life curve of composites. By analyzing the fatigue life of composites, it is found that there is a certain regularity based on metal materials, and the new fatigue prediction model can also reflect this regularity.
Ocean Engineering Equipment
Numerical Simulation Investigation on Parameter Optimization of Deep-Sea Mining Vehicles
Hongyun Wu, Wei Liu, Min Jiang, Changfeng Li, Jiangming Li, Bingzheng Chen, Chunlai Wang, Yuheng Chen
2023, 36: 54. doi: 10.1186/s10033-023-00871-z
[Abstract](99) [FullText HTML] (75) [PDF 2962KB](0)
Abstract:
The four-track walking mining vehicle can better cope with the complex terrain of cobalt-rich crusts on the seabed. To explore the influence of different parameters on the obstacle-crossing ability of mining vehicles, this paper took a certain type of mine vehicle as an example and establish a mechanical model of the mine vehicle. Through this model, the vehicle’s traction coefficient variation could be analyzed during the obstacle-crossing process. It also reflected the relationship between the obstacle-crossing ability and the required traction coefficient. Many parameters were used for this analysis including the radius of the guide wheel radius, ground clearance of the driving wheel, the dip angle of the approaching angular and the position of centroid. The result showed that the ability to cross the obstacles requires adhesion coefficient as support. When the ratio between obstacle height and ground clearance of the guide wheel was greater than 0.7, the required adhesion coefficient increased sharply. The ability to cross obstacles will decrease, if the radius of the guide wheel increases, the height of the driving wheel increases or the dip angle of the approaching angular increases. It was most beneficial to cross the obstacle when the ratio of the distance between the center of mass and the front driving wheel to the wheelbase is between 0.45‒0.48. The results of this paper could provide reference for structural parameter design and performance research for mining vehicles.