2008 Vol.21(6)

Display Mode:          |     

POWER FLOW ANALYSIS AND APPLICATION SIMULATION OF ELECTROMAGNETIC CONTINUOUSLY VARIABLE TRANSMISSION
2008, 22(6).
[Abstract](2319) [PDF 449KB](89)
Abstract:
With the structure of two air gaps and two rotors, the electromagnetic continuously variable transmission(EMCVT) is a novel power-split continuously variable transmission(CVT). There are two kinds of power flowing through the EMCVT, one is mechanical power and the other is electric power. In the mean time, there are three power ports in the EMCVT, one is the outer rotor named mechanical power port and the other two are the inner rotor and the stator named electric power ports. The mechanical power port is connected to the driving wheels through the final gear and the electric ports are connected to the batteries through the transducers. The two kinds of power are coupled on the outer rotor of the EMCVT. The EMCVT can be equipped on the conventional vehicle being regarded as the CVT and it also can be equipped on the hybrid electric vehicle(HEV) as the multi-energy sources assembly. The power flows of these two kinds of applications are analysed. The back electromotive force(EMF) equations are illatively studied and so the dynamic mathematic model is theorized. In order to certify the feasibility of the above theories, three simulations are carried out in allusion to the above two kinds of mentioned applications of the EMCVT and a five speed automatic transmission(AT) vehicle. The simulation results illustrate that the efficiency of the EMCVT vehicles is higher than that of the AT vehicle owed to the optimized operation area of the engine. Hence the fuel consumption of the EMCVT vehicles is knock-down.
DETECTION METHOD OF SPOT WELDING BASED ON MULTI-INFOR-MATION FUSION AND FRACTAL
2008, 22(6).
[Abstract](2286) [PDF 311KB](54)
Abstract:
A novel detection method of support vector machine (SVM) based on fractal dimension of signals is presented. And models of SVM are made based on nugget size defects of spot welding. Classification using these trained SVM models is done to signals of spot welding. It is shown from effect of different SVM models that these models with different inputs. In detection of defects, these models with inputs including sound signal have a high percentage of accuracy, the detection accuracy of these models with inputs including voltage signal will reduce. So the SVM models based on fractal dimensions of sound are some optimal nondestructive detection ones. At last a comparison between SVM detection model and ANNS detection model is researched which indicates that SVM is a more effective measure than Artificial neural networks in detection of nugget size defects during spot welding.
MECHANICAL PROPERTIES OF FINE PITCH DEVICES SOLDERED JOINTS BASED ON CREEP MODEL
2008, 22(6).
[Abstract](2303) [PDF 416KB](239)
Abstract:
Nonlinear analyses of quad flat package (QFP) on printed circuit board (PCB) assemblies subjected to thermal cycling conditions are presented. Two different solders are considered, namely, Sn37Pb and Sn3.5Ag. The stress and strain response of fine pitch devices soldered joints was investigated by using finite element method based on Garofalo-Arrheninus model. The simulated results indicate creep distribution of soldered joints is not uniform, the heel and toe of soldered joints, the area between soldered joints and leads are the creep concentrated sites. The similar phenomena of stress curves simulated based on Garofalo-Arrheninus model and Anand equations is confirmed, and the creep strain value of Sn3.5Ag soldered joints is lower than that of Sn37Pb soldered joints. Thermal cycling results show that Sn3.5Ag strongly outperforms Sn37Pb for QFP devices under the studied test condition. This is well matched with the experimental outcome analyzed. In addition, the soldered devices were tested by micro-joints tester, the tensile strength of Sn3.5Ag soldered joints is found to be higher than that of Sn37Pb soldered joints. By analyzing the fracture microstructure of soldered joints, it is found that fracture mechanism of Sn3.5Ag soldered joints is toughness fracture, while fracture mechanism of Sn37Pb soldered joints includes brittle fracture and toughness fracture. The results of this study provide an important basis of understanding the mechanical properties of fine pitch devices with traditional Sn37Pb and Sn3.5Ag lead-free soldered joints.
DYNAMIC CHARACTERISTICS OF LARGE FLOW RATING ELECTRO- HYDRAULIC PROPORTIONAL CARTRIDGE VALVE
2008, 22(6).
[Abstract](2186) [PDF 276KB](294)
Abstract:
A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer function of the valve is derived. With the transfer function, some structure elements that may affect its performance are investigated. Through the numerical simulation and test study, some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. The paper provides theoretical basis for engineering applications and series expanding design works.
FORCE FEEDBACK MODEL OF ELECTRO-HYDRAULIC SERVO TELE-OPERATION ROBOT BASED ON VELOCITY CONTROL
2008, 22(6).
[Abstract](2123) [PDF 170KB](114)
Abstract:
The tele-operation robotic system which consists of an excavator as the construction robot, and two joysticks for operating the robot from a safe place are useful for performing restoration in damaged areas. In order to accomplish a precise task, the operator needs to feel a realistic sense of task force brought about from a feedback force between the fork glove of slave robot and unfamiliar environment. A novel force feedback model is proposed based on velocity control of cylinder to determine environment force acting on fork glove. Namely, the feedback force is formed by the error of displacement of joystick with velocity and driving force of piston, and the gain is calculated by the driving force and threshold of driving force of hydraulic cylinder. Moreover, the variable gain improved algorithm is developed to overcome the defect for grasping soft object. Experimental results for fork glove freedom of robotic system are provided to demonstrate the developed algorithm is available for grasping soft object.
INTEGRAL EQUATION METHOD’S APPLICATION IN HOLE-EDGE STRESS OF COMPOSITE MATERIAL PLATE WITH DIFFERENT SHAPED HOLES
2008, 22(6).
[Abstract](2128) [PDF 133KB](57)
Abstract:
The strength of composite plate with different hole-shapes is always one of the most important but complicated issues in the application of the composite material. The holes will lead to mutations and discontinuity to the structure. So the hole-edge stress concentration is always a serious phenomenon. And the phenomenon makes the structure strength decrease very quickly to form dangerous weak points. Most partial damage begins from these weak points. According to the complex variable functions theory, the accurate boundary condition of composite plate with different hole-shapes is founded by conformal mapping method to settle the boundary condition problem of complex hole-shapes. Composite plate with commonly hole-shapes in engineering is studied by several complex variable stress function. The boundary integral equations are founded based on exact boundary conditions. Then the exact hole-edge stress analytic solution of composite plate with rectangle holes and wing manholes is resolved. Both of offset axis loadings and its influences on the stress concentration coefficient of the hole-edge are discussed. And comparisons of different loads along various offset axis on the hole-edge stress distribution of orthotropic plate with rectangle hole or wing manhole are made. It can be concluded that hole-edge with continuous variable curvatures might help to decrease the stress concentration coefficient; and smaller angle of outer load and fiber can decrease the stress peak value.
OPTIMIZATION OF CORONARY STENT STRUCTURE DESIGN FOR MAXIMIZING THE ANTI- COMPRESSION MECHANICAL PROPERTY
2008, 22(6).
[Abstract](2160) [PDF 331KB](73)
Abstract:
Excellent mechanical property of the anti-compression or high collapse pressure has become an essential feature of new coronary stents. How to determine the design parameters of stent becomes the key to improve the stent quality. An integrated approach using radial basis function neural network (RBFNN) and genetic algorithm (GA) for the optimization of anti-compression mechanical property of stent is presented in this paper. First, finite element simulation and RBFNN are used to map the complex non-linear relationship between the collapse pressure and stent design parameters. Then GA is employed with the fitness function based on an RBFNN model for arriving at optimum configuration of the stent by maximizing the collapse pressure. The results of numerical experiment demonstrate that the combination of RBFNN and GA is an effective approach for the mechanical properties optimization of stent.
DESIGN AND ANALYSIS OF NOVEL ACTIVE ACTUATOR TO CONTROL LOW FREQUENCY VIBRATIONS OF SHAFT SYSTEM
2008, 22(6).
[Abstract](2112) [PDF 382KB](73)
Abstract:
Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.
HIGH VOLTAGE SAFETY MANAGE- MENT SYSTEM OF ELECTRIC VEHICLE
2008, 22(6).
[Abstract](2139) [PDF 330KB](88)
Abstract:
In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.
ALGORITHM FOR ACOUSTIC PASSIVE LOCALIZATION WITH DUAL ARRAYS
2008, 22(6).
[Abstract](2126) [PDF 285KB](162)
Abstract:
Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.
ORDER-PICKING OPTIMIZATION FOR AUTOMATED PICKING SYSTEM WITH PARALLEL DISPENSERS
2008, 22(6).
[Abstract](2195) [PDF 264KB](261)
Abstract:
Based on the characteristics of parallel dispensers in automated picking system, an order-picking optimization problem is presented. Firstly, the working principle of parallel dispensers is introduced, which implies the time cost of picking each order is influenced by the order-picking sequence. So the order-picking optimization problem can be classified as a dynamic traveling salesman problem (TSP). Then a mathematical model of the problem is established and an improved max-min ant system (MMAS) is adopted to solve the model. The improvement includes two aspects. One is that the initial assignment of ants depends on a probabilistic formula instead of a random deployment; the other is that the heuristic factor is expressed by the extra picking time of each order instead of the total. At last, an actual simulation is made on an automated picking system with parallel dispensers. The simulation results proved the optimization value and the validity of improvement on MMAS.
DYNAMICS ANALYSIS OF SPECIAL STRUCTURE OF MILLING-HEAD MACHINE TOOL
2008, 22(6).
[Abstract](1673) [PDF 495KB](218)
Abstract:
The milling-head machine tool is a sophisticated and high-quality machine tool of which the spindle system is made up of special multi-element structure. Two special mechanical configurations make the cutting performance of the machine tool decline. One is the milling head spindle supported on two sets of complex bearings. The mechanical dynamic rigidity of milling head structure is researched on designed digital prototype with finite element analysis(FEA) and modal synthesis analysis(MSA) for identifying the weak structures. The other is the ram structure hanging on milling head. The structure is researched to get dynamic performance on cutting at different ram extending positions. The analysis results on spindle and ram are used to improve the mechanical configurations and structure in design. The machine tool is built up with modified structure and gets better dynamic rigidity than it was before.
RAPID AND NONDESTRUCTIVE MEASUREMENT SYSTEM FOR WELDING RESDIUAL STRESS BY ULTRASONIC METHOD
2008, 22(6).
[Abstract](1694) [PDF 249KB](66)
Abstract:
Traditional methods of residual stress measurement are generally destructive or semi-destructive, as well as expensive, time-consuming and complex to implement. With the new development of welded structure, traditional methods can not satisfy the need of full life task management. So the acoustical theory is introduced, since the ultrasonic technique provides a useful nondestructive tool in the evaluation of stresses. In this study an ultrasonic stress measurement experimental installation is established, which consists of a special transducer, a signal emission unit and a signal recipient processing unit. Longitudinal critically refracted wave is selected as the measurement wave mode. The supporting software is programmed by Labview software. The longitudinal residual stress and transverse residual stress of twin wire welded plate are measured by this installment, in which the measuring process is real-time, quick and nondestructive. The experiment results indicate that the system can satisfy the need of life evaluation for welded structure. The system is light and portable.
TRANSVERSE VIBRATION CHARACTERISTICS OF VISCOELASTIC RECTANGULAR PLATE WITH CRACK
2008, 22(6).
[Abstract](1700) [PDF 287KB](122)
Abstract:
Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are established and the expression of additional rotation induced by the crack is derived. The complex eigenvalue equations of the viscoelastic plate with crack are derived by the differential quadrature method, and the method is used at the crack continuity conditions. Dimensionless complex frequencies of a crack viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated. The effects of the crack parameter, the aspect ratio and dimensionless delay time of the material on the transverse vibration of the viscoelastic plate are analyzed.
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-II FOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION
2008, 22(6).
[Abstract](1679) [PDF 369KB](117)
Abstract:
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-II (NSGA-II) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-II (GNSGA-II) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-II is prevented from premature convergence and refine the performance of NSGA-II at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-II is compared with NSGA-II. As a result, the GNSGA-II is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-II, premature convergence is better avoided and search efficiency has been improved sharply.
CALIBRATION OF A 6-DOF SPACE ROBOT USING GENETIC ALGORITHM
2008, 22(6).
[Abstract](1789) [PDF 368KB](178)
Abstract:
The kinematic error model of a 6-DOF space robot is deduced, and the cost function of kinematic parameter identification is built. With the aid of the genetic algorithm (GA) that has the powerful global adaptive probabilistic search ability, 24 parameters of the robot are identified through simulation, which makes the pose (position and orientation) accuracy of the robot a great improvement. In the process of the calibration, stochastic measurement noises are considered. Lastly, generalization of the identified kinematic parameters in the whole workspace of the robot is discussed. The simulation results show that calibrating the robot with GA is very stable and not sensitive to measurement noise. Moreover, even if the robot’s kinematic parameters are relative, GA still has strong search ability to find the optimum solution.
ROBUST DESIGN OF A TWO DEGREE FREEDOM SYSTEM DUE TO THE PARAMETER UNCERTAINTY
2008, 22(6).
[Abstract](2110) [PDF 222KB](77)
Abstract:
A method based on the robust design optimization is presented to handle the structural uncertainty problems. The variations caused in dynamic performance can be expressed by the mean response and the standard deviation of the performance. The robust optimization approach, based on a multi-objective and non-deterministic method, attempts to both optimize the mean performance and minimize the variance of the performance simultaneously. The best possible design optimization is chosen by a trade-off decision. An example of robust design of a two degree freedom system is used to effectively illustrate the application in dynamics. The mass and stiffness uncertainty in the main system as well as the uncertainty of the mass, stiffness and damping in the absorber are considered all together in order to minimize the displacement response of the main system within a wide band of excitation frequencies. The robust optimization results show a significant improvement in performance compared with the conventional solution recommended from vibration textbooks. It is indicated that robust design methods have great potential for application in structural dynamics to deal with uncertainty problems.
COMPUTER SIMULATION OF CONTINUOUS ELECTROMAGNETIC STIRRING FOR MAKING RHEOLOGIC SEMI-SOLID SLURRY OF ZL112Y ALUMINUM ALLOY
2008, 22(6).
[Abstract](1723) [PDF 1543KB](110)
Abstract:
To realize the technology of fabricating the rheologic semi-solid slurry of ZL112Y aluminum alloy via continues electromagnetic stirring process, ANSYS software was used to simulate electromagnetic force field and fluid velocity field in the alloy melt in a crucible tube in three coils. In the first section of the paper, eletromagnetic force field and fluid velocity field caused by single coil were simulated. The result of this simulation gives an average velocity of 3.2 cm/s and it is called critical velocity because a fluid velocity over it will cause a fine and spherical structure of solid primary α in a semi-solid melt. And, from this result, a reasonable temperature of semi-solid of the alloy and an electrical current intensity were established. The electrical current intensity of the result of this simulation corresponded to the current intensity used in a practice experiment, in which the primary α was obviously refined and sphericized. Based on this simulation of single coil electromagnetic stirring, in the second section of the paper, eletromagnetic force field and fluid velocity field caused by three coils were simulated. The result of the simulation shows that, 1) there is a semi-solid zone of 32 mm from bottom of the crucible tube to the upper; 2) the electrical current intensities of three coils of 400 A, 600 A, and 400 A, which were set to top range, middle range and bottom range of the tube, respectively, were the optimum parameters of electromagnetic current intensity under the condition of this investigation; and 3) under effect of these electromagnetic current intensity, the fluid velocities of the melt in the tube were 6.3 cm/s in top range, 3.75 cm/s in middle range, and 3.9 cm/s in bottom range of it, respectively.
TOOTH CURVES AND ENTIRE CONTACT AREA IN PROCESS OF SPLINE COLD ROLLING
2008, 22(6).
[Abstract](1686) [PDF 215KB](124)
Abstract:
In spline rolling process, the contact area between roller and workpiece plays an important role in calculating rolling-force and rolling-moment. For the purpose of studying the contact area, contact state between roller and workpiece in process of spline cold rolling based upon cross rolling is analyzed. According to the suitable hypothesis, the mathematic model of roller-tooth-curve in optional position of rolling process is established. Combing the theory of conjugate curves with the theory of envelope curve, the corresponding mathematic model of workpiece-tooth-curve is established. By utilizing establishing mathematic models, the algorithm of entire contact area in rolling process is created. On the basis of the algorithm, calculation-program is compiled under MATLAB program language environment. The calculation-program actualizes quantitative analysis and quantitative calculation of contact areas. Utilizing the calculation-program, the influence of parameters on contact area is analyzed, and the tendency is consistent with the manufacturing experience. In consideration of rolling-force optimization, the primary process parameters may be selected according to results of calculation. The result of the present study may provide basis for research on rolling-force and rolling-moment.
OPTIMIZING DESIGN OF MECHANICAL SELF-CENTERING DEVICE FOR SUSPENSION HEIGHT
2008, 22(6).
[Abstract](1834) [PDF 378KB](164)
Abstract:
Firstly, in view of the respective defects of existing self-centering devices for vehicle suspension height, the design scheme of the proposed mechanical self-centering device for suspension height is described. Taking the rear suspension of a certain light bus as a research example, the structures and parameters of the novel device are designed and ascertained. Then, the road excitation models, the performance evaluation indexes and the half-vehicle model are built, the simulation outputs of time and frequency domain are obtained with the road excitations of random and pulse by using MATLAB/Simulink software. So the main characteristics of the self-centering suspension are presented preliminarily. Finally, a multi-objective parameter design optimization model for the self-centering device is built by weighted sum approach, and optimal solution is obtained by adopting complex approach. The relevant choosing-type parameters for self-centering device components are deduced by using discrete variable optimal method, and the optimal results are verified and analyzed. So the performance potentials of the self-centering device are exerted fully in condition of ensuring overall suspension performances.
INTELLIGENT CONTROL SYSTEM OF PULSED MAG WELDING INVERTER BASED ON DIGITAL SIGNAL PROCESSOR
2008, 22(6).
[Abstract](1687) [PDF 197KB](85)
Abstract:
A fuzzy logic intelligent control system of pulsed MAG welding inverter based on digital signal processor (DSP) is proposed to obtain the consistency of arc length in pulsed MAG welding. The proposed control system combines the merits of intelligent control with DSP digital control. The fuzzy logic intelligent control system designed is a typical two-input-single-output structure, and regards the error and the change in error of peak arc voltage as two inputs and the background time as single output. The fuzzy logic intelligent control system is realized in a look-up table (LUT) method by using MATLAB based fuzzy logic toolbox, and the implement of LUT method based on DSP is also discussed. The pulsed MAG welding experimental results demonstrate that the developed fuzzy logic intelligent control system based on DSP has strong arc length controlling ability to accomplish the stable pulsed MAG welding process and controls pulsed MAG welding inverter digitally and intelligently.