2010 Vol.23(6)

Display Mode:          |     

Experimental Study on Metal Transfer and Welding Spatter Characteristics of Cellulose Electrode
2010, 24(6).
[Abstract](2607) [PDF 100KB](145)
Abstract:
Welding spatter cause many problems during the welding process and this issue is particularly important for cellulose electrode welding. The hot flying spatter balls often deteriorate the working environment, and decrease the welding efficiency. Many factors affect the welding spatter, and metal transfer behavior is one of the main factors. Many studies concerning the spatter mechanism in arc welding process were made; most of them focused on the solid wire welding and the study on cellulose electrode is rarely reported. In this paper the metal transfer behavior and the weld spatter characteristics of three commercial cellulose electrodes were studied experimentally by using a high speed camera for visually capturing the metal transfer. The relationship between the metal transfer and the welding spatter was analyzed experimentally by comparing the spatter loss coefficient, which is for quantitative evaluation of welding spatter, with the statistical analysis of the large droplet transfer mode. The results showed that short circuiting transfer, large droplet spray transfer, fine droplet spray transfer and explosive transfer govern the metal transfer modes in cellulose electrode welding. Weld spatter occurred mainly in the deflection of large droplet process, explosive transfer process and fine droplet spraying process. Different metal transfer modes lead to different spatter. The deflection of large droplet and explosive transfer are the main factors of the spatter formation. Minimizing the droplet size and reducing the deflection of large droplet and explosive transfer leads to the reduction the amount of spatter in cellulose electrode welding.
Novel Flexible Foot System for Humanoid Robot Adaptable to Uneven Ground
2010, 24(6).
[Abstract](2448) [PDF 730KB](274)
Abstract:
Humanoid robots can walk stably on flat ground, regular slopes, and stairs. However, because of their rigid and flat soles, adapting to unknown rough terrains is limited, moreover, to maintain large scale four-point contact for foot structures to keep balance is usually a key technical problem. In order to solve these problems, the control strategy and foot structures should be improved. In this paper, a novel flexible foot system is proposed. This system occupies 8 degrees of freedom (DOF), and can obtain larger support region to keep in four-point contact with uneven terrains; Novel cable transmission technology is put forward to reduce complexity of traditional mechanism and control strategy, and variation of each DOF is mapped to cable displacement. Furthermore, kinematics of this new system and a global dynamic model based on contact-force feedback are analyzed. According to stability criterion and feedback sensor information, a method calculating the optimal attitude matrix of contact points and joint variables is introduced. Virtual prototyping models of a 30–DOF humanoid robot and rough terrain are established to simulate humanoid robot walking on uneven ground, and feasibility of this system adapted to uneven terrain and validity of its control strategy are verified. The proposed research enhances the capability of humanoid robots to adapt to large scale uneven ground, expands the application field of humanoid robots, and thus lays a foundation for studies of humanoid robots performing tasks in complex environments in place of humans.
Experiment and Numerical Simulation of Free Water Jet by a Central-body Nozzle
2010, 24(6).
[Abstract](2286) [PDF 499KB](162)
Abstract:
The recent research about cavitation jet mainly focuses on the organ-pipe nozzle and triangular nozzle. The research content mainly includes the optimized design about the structure of nozzles, the observation and flow analysis about the cavitation jet in the water, and the theory of rock attacked by the cavitation jet, while the energy characteristic of the free jet is not studied yet. In China, the research about the central-body nozzle is almost empty. For the purpose of studying the energy characteristic and the structure of free water jet discharged from central-body nozzle, an experiment with phase Doppler particle anemometry(PDPA) technology is carried out to measure the free water jet flow, which is produced by a central-body nozzle under the jet pressure of 15 MPa. While five sections with different axial distances from the nozzle outlet are selected for data process and analysis, the axial and radial velocity and the droplets of the particle size are studied. Meanwhile, numerical calculation of corresponding flow field is conducted by using volume of fluid(VOF) multiphase model, and the jet flow feature is discussed. The experimental and calculating results show that the axial velocity of high speed jet flow dissipates slowly in the air, and the core area and diffused area are discovered. The diameter of droplet in the core area is small, and jet energy is concentrated, while in the diffusion area, water is mingled with ambient air and radial velocity is relatively large. Obvious low-pressure area exists behind the central body and potential cavitation may occur in that area. The proposed research reveals the energy characteristic of free jet discharged from central-body nozzle, provides the theoretical basis for preestimating erosion feature of the central-body nozzle and also the theoretical foundation for revealing the mechanism of erosion.
Kinematics Analysis of Mechanisms Based on Virtual Assembly
2010, 24(6).
[Abstract](2322) [PDF 548KB](237)
Abstract:
Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic analysis of mechanism only aim at analyzing motion law of single mechanism, but can not simulate the multi-mechanisms motion process at the same time, let alone simulating the automatic assembly process of products in a whole assembly workshop. In order to simulate the assembly process of products in an assembly workshop and provide effective data for analyzing mechanical performance after finishing assembly simulation in virtual environment, this study investigates the kinematics analysis of mechanisms based on virtual assembly. Firstly, in view of the same function of the kinematic pairs and the assembly constraints on restricting the motion of components (subassembly or part), the method of identifying kinematic pairs automatically based on assembly constraints is presented. The information of kinematic pairs can be obtained through calculating the constraint degree of the assembly constraints. Secondly, the incidence matrix eliminating element method is proposed in order to search the information and establish the models of mechanisms automatically after finishing assembly simulation in virtual environment. Both methods have important significance for reducing the workload of pretreatment and promoting the level of automation of kinematics analysis. Finally, the method of kinematics analysis of mechanisms is presented. Based on Descartes coordinates, three types of kinematics equations are formed. The parameters, like displacement, velocity, and acceleration, can be obtained by solving these equations. All these data are important to analyze mechanical performance. All the methods are implemented and validated in the prototype system virtual assembly process planning(VAPP). The mechanism models are established and simulated in the VAPP system, and the result curves are shown accurately. The proposed kinematics analysis of mechanisms based on virtual assembly provides an effective method for simulating product assembly process automatically and analyzing mechanical performance after finishing assembly simulation.
Locating Error Considering Dimensional Errors Modeling for Multistation Manufacturing System
2010, 24(6).
[Abstract](2285) [PDF 346KB](90)
Abstract:
Multistation machining process is widely applied in contemporary manufacturing environment. Modeling of variation propagation in multistation machining process is one of the most important research scenarios. Due to the existence of multiple variation streams, it is challenging to model and analyze variation propagation in a multi-station system. Current approaches to error modeling for multistation machining process are not explicit enough for error control and ensuring final product quality. In this paper, a mathematic model to depict the part dimensional variation of the complex multistation manufacturing process is formulated. A linear state space dimensional error propagation equation is established through kinematics analysis of the influence of locating parameter variations and locating datum variations on dimensional errors, so the dimensional error accumulation and transformation within the multistation process are quantitatively described. A systematic procedure to build the model is presented, which enhances the way to determine the variation sources in complex machining systems. A simple two-dimensional example is used to illustrate the proposed procedures. Finally, an industrial case of multistation machining part in a manufacturing shop is given to testify the validation and practicability of the method. The proposed analytical model is essential to quality control and improvement for multistation systems in machining quality forecasting and design optimization.
Atomistic Simulations of the Mechanical Deformation of Irradiation-amorphized Silicon Carbide
2010, 24(6).
[Abstract](2268) [PDF 487KB](120)
Abstract:
Irradiation-induced atomic-scale defects and lattice disorder in Silicon Carbide (SiC) can significantly affect the material’s mechanical properties. Currently there lacks a unified physical model capable of describing the law in which the properties of SiC scale with the accumulation of defects, especially in terms of the underlying physical mechanism. To develop fundamental models that are capable of describing the various physical properties of SiC as a function of microstructural change, molecular dynamics simulations of uniaxial tension were performed on a series of irradiation-amorphized SiC (a-SiC) samples with a range of imposed chemical disorder, which is defined as the ratio between the number of homonuclear bonds and heteronuclear bonds (χ NC-C ∕ NSi-C). With increasing chemical disorder, significant alternation of mechanical response of a-SiC has been detected in terms of increasingly pronounced plastic flow. Meanwhile relevant mechanical properties, including Young’s modulus, strength, yield stress and strain, as well as failure strain scale monotonically with chemical disorder while in distinct manners. Specifically slight chemical disorder (χ 0.045) could induce substantial reduction of Young’s modulus up to 2%, whereas strength basically linearly varies with chemical disorder until χ 0.5 upon which the variations in mechanical properties tend to saturate. Further examination of the evolution of atomic structure of a-SiC reveals a crossover of deformation mechanisms from homogeneous elastic deformation to localized plastic flow, which accounts for the strong chemical disorder dependence of the mechanical properties as well as mechanical responses of amorphous SiC. This crossover is also manifested in switching of fracture mode from brittle failure dominated by lattice instability in the ligaments between topological disordered clusters to nanoductile failure preceded by percolation of nanocavities. Employing chemical disorder to measure the defect concentration of a-SiC could contribute to the quantification of the correlation between mechanical properties and the corresponding defective a-SiC structure. Moreover the distinct scale laws shown by Young’s modulus and strength with chemical disorder and the proposed critical chemical disorder threshold could benefit the quantitative evaluations of the mechanical performances of SiC components in different irradiation environments.
Development of Calculation Software for Automotive Side Swing Door Closing Energy
2010, 24(6).
[Abstract](2310) [PDF 348KB](394)
Abstract:
The existing research of the automotive side swing door closing energy is mainly conducted by measuring the closing energy and the closing angle via tests and simulations. In these tests, the door closing velocity and initial door closing angle are usually not taken into consideration, so the accuracy of the test data cannot be ensured, and, meanwhile, simulations require a great deal of manpower and time. Moreover, frequent tests would give rise to the increasing research and development costs. In this paper, in response to the deficiencies of these current methods, the complicated door closing process is decomposed into the closing processes of different subsystems of door, which includes weather strip seal, air-binding effect, door weight, hinge, check-link and latch. Mathematical models of those subsystems are established according to their working principles during the door closing process. In addition to the theoretical research, an Excel-based software using Visual Basic Application programming language is developed to realize the mathematical models, which aims to calculate the energy consumption of the subsystems. The energy consumption of different subsystems of a production vehicle door is measured to verify the accuracy of the calculation software developed. The proposed research provides not only the theoretical basis for the future door closing energy research, but also an interactive method and system, effectively improving the quality and efficiency of vehicle door design.
Adsorption Performance of Sliding Wall-Climbing Robot
2010, 24(6).
[Abstract](2291) [PDF 390KB](237)
Abstract:
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot’s comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR’s adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR’s adsorption performance. The effect of locomotion mechanism selection and seal’s pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system’s thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller’s key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller’s rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system’s static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR’s adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
Clearance Influence on Dynamic Response of Intermittent Roller Chain Drive
2010, 24(6).
[Abstract](2340) [PDF 498KB](125)
Abstract:
The clearances appear in chain link hinges induced by manufacturing tolerance or wear of components are the most important factor that influences the dynamic performance of the intermittent roller chain drives. Due to the existence of the clearances in chain link hinges, the serious impact vibration phenomenon which influences the stability and the position accuracy of the chain drive system would be caused in the intermittent motion. But, the problem may be that a reasonable modeling on the chain with clearances is difficult due to the large clearance’s number in chain system and the fact that the clearance’ size are different. Currently, the studies on the dynamics of the intermittent roller chain considering the multi-clearance’ joints are rare. Most research works have only focused on the constant moving chains. Taking the intermittent roller chain system as an object, this paper designs and builds the experimental device of this kind of mechanical system. The Longitudinal vibration response of the intermittent chain under the different motion laws was tested. The experimental study shows that the clearances presented in chain link hinges can cause severe impact vibration in the intermittent motion of chain. In subsequent work, the dynamic model of the intermittent roller chain system with the multi-clearance’ joints was established. By calculating the dynamic response of this kind of mechanical system under the different motion laws, the effect of the clearances on the dynamic response of the intermittent chain drive system was analyzed. The theoretical simulation shows that the serious impact vibration phenomenon of the chain system can be caused by the clearances at the start accelerating period, and the chain drive system is often accompanied by the severe shock and vibration at the moment that the chain moves from the acceleration period to deceleration period. The research conclusions made by the experimental and theoretical studies indicate that the use of motion laws with small and continuous jerk at conversion point can effectively suppress the impact vibration at this point caused by clearances’ effect. Additionally, the use of nonsymmetrical motion laws with small jerk approaching the end of the indexing period can obtain a smaller residual vibration. The presented motion law can provide an important reference for the improvement of the dynamic performance of the intermittent chain drive systems.
Novel Method for Spatial Angle Measurement Based on Rotating Planar Laser Beams
2010, 24(6).
[Abstract](2299) [PDF 357KB](246)
Abstract:
Spatial angle measurement, especially the measurement of horizontal and vertical angle, is a basic method used for industrial large-scale coordinate measurement. As main equipments in use, both theodolites and laser trackers can provide very high accuracy for spatial angle measurement. However, their industrial applications are limited by low level of automation and poor parallelism. For the purpose of improving measurement efficiency, a lot of studies have been conducted and several alternative methods have been proposed. Unfortunately, all these means are either low precision or too expensive. In this paper, a novel method of spatial angle measurement based on two rotating planar laser beams is proposed and demonstrated. Photoelectric receivers placed on measured points are used to receive the rotating planner laser signals transmitted by laser transmitters. The scanning time intervals of laser planes were measured, and then measured point’s horizontalvertical angles can be calculated. Laser plane’s angle parameters are utilized to establish the abstract geometric model of transmitter. Calculating formulas of receiver’s horizontalvertical angles have been derived. Measurement equations’ solvability conditions and judgment method of imaginary solutions are also presented after analyzing. Proposed method for spatial angle measurement is experimentally verified through a platform consisting of one laser transmitter and one optical receiver. The transmitters used in new method are only responsible for providing rotating light plane signals carrying angle information. Receivers automatically measure scanning time of laser planes and upload data to the workstation to calculate horizontal angle and vertical angle. Simultaneous measurement of multiple receivers can be realized since there is no human intervention in measurement process .Spatial angle measurement result indicates that the repeatable accuracy of new method is better than 10". Proposed method can improve measurement’s automation degree and speed while ensuring measurement accuracy.
Effects of Blade Number on Characteristics of Centrifugal Pumps
2010, 24(6).
[Abstract](16110) [PDF 392KB](3062)
Abstract:
The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow pumps, the influence of blade number on inner flow filed and characteristics of centrifugal pump has not been understood completely. Therefore, the methods of numerical simulation and experimental verification are used to investigate the effects of blade number on flow field and characteristics of a centrifugal pump. The model pump has a design specific speed of 92.7 and an impeller with 5 blades. The blade number is varied to 4, 6, 7 with the casing and other geometric parameters keep constant. The inner flow fields and characteristics of the centrifugal pumps with different blade number are simulated and predicted in non-cavitation and cavitation conditions by using commercial code FLUENT. The impellers with different blade number are made by using rapid prototyping, and their characteristics are tested in an open loop. The comparison between prediction values and experimental results indicates that the prediction results are satisfied. The maximum discrepancy of prediction results for head, efficiency and required net positive suction head are 4.83%, 3.9% and 0.36 m, respectively. The flow analysis displays that blade number change has an important effect on the area of low pressure region behind the blade inlet and jet-wake structure in impellers. With the increase of blade number, the head of the model pumps increases too, the variable regulation of efficiency and cavitation characteristics are complicated, but there are optimum values of blade number for each one. The research results are helpful for hydraulic design of centrifugal pump.
Stress Corrosion Cracking of Nitrogen-containing Stainless Steel 316LN in High Temperature Water Environments
2010, 24(6).
[Abstract](2293) [PDF 626KB](259)
Abstract:
Stress corrosion cracking (SCC) of stainless steels and Ni-based alloys in high temperature water coolant is one of the key problems affecting the safe operation of nuclear power plants (NPPs). The nitrogen-added stainless steel is a kind of possible candidate materials for mitigating SCC since reducing the carbon content and adding nitrogen to offset the loss in strength caused by the decrease in carbon content can mitigate the problem of sensitization. However, the reports of SCC of nitrogen-added stainless steels in high temperature water are few available. The effects of applied potential and sensitization treatment on the SCC of a newly developed nitrogen-containing stainless steel (SS) 316LN in high temperature water doped with chloride at 250 ℃ were studied by using slow strain rate tests (SSRTs). The SSRT results are compared with our data previously published for 316 SS without nitrogen and 304NG SS with nitrogen, and the possible mechanism affecting the SCC behaviors of the studied steels is also discussed based on SSRT and microstucture analysis results. The susceptibility to cracking of 316LN SS normally increases with increasing potential. The susceptibility to SCC of 316LN SS was less than that of 316 SS and 304NG SS. Sensitization treatment at 700 ℃ for 30 h showed little effect on the SCC of 316LN SS and significant effect on the SCC of 316 SS. The predominant cracking mode for the 316LN SS in both annealed state and the state after the sensitization treatment was transgranular. The presented conditions of mitigating stress corrosion cracking are some useful information for the safe use of 316LN SS in NPPs.
Methodology to Estimate Remaining Service Life of Steel Structure by Possibilistic Reliability Theory
2010, 24(6).
[Abstract](2391) [PDF 376KB](234)
Abstract:
Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris–Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t–22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.
Theoretical Analysis and Numerical Simulation of the Static and Dynamic Characteristics of Hydrostatic Guides Based on Progressive Mengen Flow Controller
2010, 24(6).
[Abstract](2531) [PDF 385KB](239)
Abstract:
The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.
Quasi Ellipsoid Gear Surface Reconstruction Based on Meshless Local Petrov-Galerkin Method and Transmission Characteristic
2010, 24(6).
[Abstract](2285) [PDF 250KB](122)
Abstract:
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can’t provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points—sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
Optimization of the Tuned Mass Damper for Chatter Suppression in Turning
2010, 24(6).
[Abstract](2311) [PDF 453KB](716)
Abstract:
The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF) into equal peaks. However, chatter is a special self-excited problem and a chatter-free machining is determined by FRF at the cutting zone. A TMD tuning aiming at achieving the maximum chatter stability is studied, and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF. By employing the steepest descend method, the optimum frequency and damping ratio of TMD are obtained, and they are compared against the equal peaks tuning. The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part, and is further verified by damping a flexible mode from the fixture of a turning machine. A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization. Both of the above two tunings are applied to modify the tool point FRF by tuning TMD respectively. Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks. Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit. The tool vibrations during the machining are compared to validate the simulation results. The proposed damping design and optimization routine are able to further increase the chatter suppression effect.
Anti-Noise Performance of the FT Continuous Zoom Analysis Method for Discrete Spectrum
2010, 24(6).
[Abstract](2272) [PDF 232KB](153)
Abstract:
As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis,but little effort had been made on this method’s anti-noise performance. It is widely believed that the analysis accuracy of the method can be substantially improved by increasing the zoom multiple, however, with the zoom multiple increases, the frequency estimation accuracy may decline sometimes in practices. Aiming at the problems above, this paper analyzes the sources of frequency estimation error when a harmonic signal mixed with and without noise is processed using the FT continuous zoom analysis. According to the characteristics that the local maximum of the zoom spectrum may be wrongly selected when the signal is corrupted with noise, the number of wrongly selected spectrum lines is deduced under different signal-to-noise ratio and local zoom multiple, and then the maximum frequency estimation error is given accordingly. The validity of the presented analysis is confirmed by simulations results. The frequency estimation accuracy of this method will not improve any more under the influence of noise, and there is a best zoom multiple, when the zoom multiple is larger than the best zoom multiple; the maximum frequency estimation error will fluctuate back and forth. The best zoom multiple curves under different signal-to-noise ratios given provide a theoretical basis for the choice of the appropriate zoom multiples of the FT continuous zoom analysis method in engineering applications.
Development of an Intelligent Vehicle Experiment System
2010, 24(6).
[Abstract](2295) [PDF 388KB](150)
Abstract:
Existing vehicle experiment systems tend to focus on the research of vehicle dynamics by conducting performance tests on every system or some parts of the vehicle so as to improve the entire performance of the vehicle. Virtual technology is widely utilized in various vehicle test-beds. These test-beds are mainly used to simulate the driving training, conduct the research on drivers’ behaviors, or give virtual demonstrations of the transportation environment. However, the study on the active safety of the running vehicle in the virtual environment is still insufficient. A virtual scene including roads and vehicles is developed by using the software Creator and Vega, and radars and cameras are also simulated in the scene. Based on dSPACE’s rapid prototyping simulation and its single board DS1103, a simulation model including vehicle control signals is set up in MATLABSimulink, the model is then built into C code, and the system defined file(SDF) is downloaded to the DS1103 board through the experiment debug software ControlDesk and is kept running. Programming is made by mixing Visual C 6.0, MATLAB API and Vega API. Control signals are read out by invoking library function MLIBMTRACE of dSPACE. All the input, output, and system state values are acquired by arithmetic and are dynamically associated with the running status of the virtual vehicle. An intelligent vehicle experiment system is thus developed by virtue of program and integration. The system has not only the demonstration function, such as general driving, cruise control, active avoiding collision, but also the function of virtual experiment. Parameters of the system can be set according to needs, and the virtual test results can be analyzed and studied and used for the comparison with the existing models. The system reflects the running of the intelligent vehicle in the virtual traffic environment, at the same time, the system is a new attempt performed on the intelligent vehicle travel research and provides also a new research method for the development of intelligent vehicles.