2011 Vol.24(4)
Display Mode: |
2011, 25(4).
Abstract:
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm.
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm.
2011, 25(4).
Abstract:
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
2011, 25(4).
Abstract:
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed.
2011, 25(4).
Abstract:
More and more biological evidences have been found that neural networks in the spinal cord, referred to as “central pattern generators” (CPGs), govern locomotion. CPGs are capable of producing rhythmic movements, such as swimming, flying, and walking, even when isolated from the brain and sensory inputs. If we could build up any models that have similar functions as CPGs, it will be much easier to design better locomotion for robots. In this paper, a self-training environment is designed and through genetic algorithm (GA), walking trajectories for every foot of AIBO are generated at first. With this acquired walking pattern, AIBO gets its fastest locomotion speed. Then, this walking pattern is taken as a reference to build CPGs with Hopf oscillators. By changing corresponding parameters, the frequencies and the amplitudes of CPGs’ outputs can be adjusted online. The limit cycle behavior of Hopf oscillators ensures the online adjustment and the walking stability against perturbation as well. This property suggests a strong adaptive capacity to real environments for robots. At last, simulations are carried on in Webots and verify the proposed method.
More and more biological evidences have been found that neural networks in the spinal cord, referred to as “central pattern generators” (CPGs), govern locomotion. CPGs are capable of producing rhythmic movements, such as swimming, flying, and walking, even when isolated from the brain and sensory inputs. If we could build up any models that have similar functions as CPGs, it will be much easier to design better locomotion for robots. In this paper, a self-training environment is designed and through genetic algorithm (GA), walking trajectories for every foot of AIBO are generated at first. With this acquired walking pattern, AIBO gets its fastest locomotion speed. Then, this walking pattern is taken as a reference to build CPGs with Hopf oscillators. By changing corresponding parameters, the frequencies and the amplitudes of CPGs’ outputs can be adjusted online. The limit cycle behavior of Hopf oscillators ensures the online adjustment and the walking stability against perturbation as well. This property suggests a strong adaptive capacity to real environments for robots. At last, simulations are carried on in Webots and verify the proposed method.
2011, 25(4).
Abstract:
Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.
Parallel manipulators with less than six degrees of freedom (DOF) have been increasingly used in high-speed hybrid machine tools. The structural features of parallel manipulators are dynamic, a characteristic that is particularly significant when these manipulators are used in high-speed machine tools. However, normal kinematic control method cannot satisfy the requirements of the control system. Many researchers use model-based dynamic control methods, such as the dynamic feedforward control method. However, these methods are rarely used in hybrid machine tools because of the complex dynamic model of the parallel manipulator. In order to study the dynamic control method of parallel manipulators, the dynamic feedforward control method is used in the dynamic control system of a 3-PSP (prismatic-spherical-prismatic) 3-DOF spatial parallel manipulator used as a spindle head in a high-speed hybrid machine tool. Using kinematic analysis as basis and the Newton-Euler method, we derive the dynamic model of the parallel manipulator. Furthermore, a model-based dynamic feedforward control system consisting of both kinematic control and dynamic control subsystems is established. The dynamic control subsystem consists of two modules. One is used to eliminate the influence of the dynamic characteristics of high-speed movement, and the other is used to eliminate the dynamic disturbances in the milling process. Finally, the simulation model of the dynamic feedforward control system of the 3-PSP parallel manipulator is constructed in Matlab/Simulink. The simulations of the control system eliminating the influence of the dynamic characteristics and dynamic disturbances are conducted. A comparative study between the simulations and the normal kinematic control method is also presented.The simulations prove that the dynamic feedforward control method effectively eliminates the influence of the dynamic disturbances and dynamic characteristics of the parallel manipulator on high-speed machine tools, and significantly improves the trajectory accuracy. This is the first attempt to introduce the dynamic feedfordward control method into the 3-PSP spatial parallel manipulator whose dynamic model is complex and provides a study basis for the real-time dynamic control of the high-speed hybrid machine tools.
2011, 25(4).
Abstract:
The exact measurement of the fill level is the key and basic problem for automatic control and optimized operation of the coal pulverizing system. Because the ball mill pulverizing system is non-linearity, long time delay and time-varying, the reliable and effective method for measuring the fill level was lacked at present. In order to reduce the influence by various factors on measuring the fill level and improve the measuring accuracy of the fill level, a novel characteristic variable is proposed. A set of wireless transmission device was designed to record vibration signals, and an accelerometer with high accuracy and large measuring range was mounted directly on the mill shell to pick up the vibration signals from the mill shell. A series of data acquisition experiments under various ball load and water content of coal conditions were conducted in an industrial mill to investigate the relationship between the fill level and the angular position of the maximum vibration point of the mill shell through the analysis of the vibration signals. The analytical result of test data clearly show that the angular position of the maximum vibration point on the mill shell decreases as the fill level increases. At the same time, comparing with the traditional characteristic variable, the feature variable of the fill level proposed in this paper is not subject to the effect of the ball load and water content of coal, which provides a new solution and reliable basis for the accurate measurement of the fill level.
The exact measurement of the fill level is the key and basic problem for automatic control and optimized operation of the coal pulverizing system. Because the ball mill pulverizing system is non-linearity, long time delay and time-varying, the reliable and effective method for measuring the fill level was lacked at present. In order to reduce the influence by various factors on measuring the fill level and improve the measuring accuracy of the fill level, a novel characteristic variable is proposed. A set of wireless transmission device was designed to record vibration signals, and an accelerometer with high accuracy and large measuring range was mounted directly on the mill shell to pick up the vibration signals from the mill shell. A series of data acquisition experiments under various ball load and water content of coal conditions were conducted in an industrial mill to investigate the relationship between the fill level and the angular position of the maximum vibration point of the mill shell through the analysis of the vibration signals. The analytical result of test data clearly show that the angular position of the maximum vibration point on the mill shell decreases as the fill level increases. At the same time, comparing with the traditional characteristic variable, the feature variable of the fill level proposed in this paper is not subject to the effect of the ball load and water content of coal, which provides a new solution and reliable basis for the accurate measurement of the fill level.
2011, 25(4).
Abstract:
The omnidirectional legged vehicle with steering-rails has a specific mechanism feature, and it can be controlled flexibly and accurately in omnidirectional motion. Currently there lacks further research in this area. In this paper, the mechanical characteristics of independent walking control and steering control and its kinematics principle are introduced, and a vehicle has a composite motion mode of parallel link mechanism and steering mechanism is presented. The motion direction control of the proposed vehicle is only dependant on its steering rails, so its motion is simple and effective to control. When the relative motion between the walking and steering is controlled cooperatively, the vehicle can walk perfectly. By controlling the steering rails, the vehicle can walk along arbitrary trajectory on the ground. To achieve a good result of motion control, an equivalent manipulator model needs to be built. In terms of the mechanism feature and the kinematic principle, the simplified manipulator model consists of a rail in stance phase, a rail in swing phase, and an equivalent leg. Considering the ground surface slope during walking, a parameter of inclination angle is added. Based on such a RPP manipulator model, the equations of motion are derived by means of Lagrangian dynamic approach. To verify the dynamic equations, the motion of the manipulator model is simulated based on linear and nonlinear motion planning. With the same model and motion parameters, the dynamic equations can be solved by Matlab and the calculation data can be gained. Compared with the simulation data, the result confirms the manipulator dynamic equations are correct. As a result of such special characteristics of the legged mechanism with steering rails, it has a potential broad application prospects. The derivation of dynamics equation could benefit the motion control of the mechanism.
The omnidirectional legged vehicle with steering-rails has a specific mechanism feature, and it can be controlled flexibly and accurately in omnidirectional motion. Currently there lacks further research in this area. In this paper, the mechanical characteristics of independent walking control and steering control and its kinematics principle are introduced, and a vehicle has a composite motion mode of parallel link mechanism and steering mechanism is presented. The motion direction control of the proposed vehicle is only dependant on its steering rails, so its motion is simple and effective to control. When the relative motion between the walking and steering is controlled cooperatively, the vehicle can walk perfectly. By controlling the steering rails, the vehicle can walk along arbitrary trajectory on the ground. To achieve a good result of motion control, an equivalent manipulator model needs to be built. In terms of the mechanism feature and the kinematic principle, the simplified manipulator model consists of a rail in stance phase, a rail in swing phase, and an equivalent leg. Considering the ground surface slope during walking, a parameter of inclination angle is added. Based on such a RPP manipulator model, the equations of motion are derived by means of Lagrangian dynamic approach. To verify the dynamic equations, the motion of the manipulator model is simulated based on linear and nonlinear motion planning. With the same model and motion parameters, the dynamic equations can be solved by Matlab and the calculation data can be gained. Compared with the simulation data, the result confirms the manipulator dynamic equations are correct. As a result of such special characteristics of the legged mechanism with steering rails, it has a potential broad application prospects. The derivation of dynamics equation could benefit the motion control of the mechanism.
2011, 25(4).
Abstract:
Diesel powered vehicles, in compliance with the more strict exhaust emission standards such as Euro V, is likely to require a diesel particulate filter (DPF). A DPF used on a vehicle will affect the acoustic emission of the diesel engine, so it is important to investigate the sound propagation rule in DPF and further to propose the optimum DPF design. However, due to the geometrical complexity of the DPF, the traditional analysis method, such as analytical method, can not assess the acoustic performance of DPF accurately in medium and high frequency band. In this paper, a combined approach of finite element analysis and viscosity correction is proposed to predict acoustic performance of DPF. A simplified model of the full DPF is established and is used to analyze the sound propagation characteristic of the DPF. The distribution of the sound pressure and velocity, the transmission matrix of the DPF are obtained using the finite element method. In addition, the method of the viscosity correction is used in the transmission matrix of the DPF to evaluate the acoustic performance of DPF. Based on the FEM computation and the viscosity correction, the transmission losses under the rated load and idle condition of a diesel engine are calculated. The calculation results show that DPF can effectively attenuate exhaust noise, and sound attenuation increase with the rise of the frequency. Sound attenuation is better under rated condition than idle condition of diesel engine, particularly in frequency above 1 000 Hz.
Diesel powered vehicles, in compliance with the more strict exhaust emission standards such as Euro V, is likely to require a diesel particulate filter (DPF). A DPF used on a vehicle will affect the acoustic emission of the diesel engine, so it is important to investigate the sound propagation rule in DPF and further to propose the optimum DPF design. However, due to the geometrical complexity of the DPF, the traditional analysis method, such as analytical method, can not assess the acoustic performance of DPF accurately in medium and high frequency band. In this paper, a combined approach of finite element analysis and viscosity correction is proposed to predict acoustic performance of DPF. A simplified model of the full DPF is established and is used to analyze the sound propagation characteristic of the DPF. The distribution of the sound pressure and velocity, the transmission matrix of the DPF are obtained using the finite element method. In addition, the method of the viscosity correction is used in the transmission matrix of the DPF to evaluate the acoustic performance of DPF. Based on the FEM computation and the viscosity correction, the transmission losses under the rated load and idle condition of a diesel engine are calculated. The calculation results show that DPF can effectively attenuate exhaust noise, and sound attenuation increase with the rise of the frequency. Sound attenuation is better under rated condition than idle condition of diesel engine, particularly in frequency above 1 000 Hz.
2011, 25(4).
Abstract:
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
Crack monitoring plays a great role in modern structural health monitoring, however, most of the conventional crack inspections have disadvantages in terms of the accuracy, expense, reliability, durability and level of instrumentation required. Thus, development of a simple and reliable crack inspection technique that allows continuous monitoring has been desired. In this paper, electrical potential technique and modern surface technology are employed together to develop a new structural surface crack monitoring method. A special crack monitoring coating sensor based on electrical potential technique was deposited on the hot spot of the structure by modern surface technology. The sensor consists of three layers: the isolated layer, the sensing layer and the protective layer. The isolated layer is prepared by anodic oxidation technology, the sensing layer is made of ion plated copper, and the protective layer is made of silicone. The thickness of each layer is at micrometer magnitude. The electrical conductivity of the sensor is very stable, and the fatigue performance of the specimen with or without coating sensor is nearly unchanged. The crack monitoring experiment result shows that there are two sudden rises of the coating sensor electrical potential values, corresponding to different stages of the crack initiation and propagation. Since the width of the surface coating sensor is only 0.5 mm, this crack monitoring sensor can detect the propagation of cracks less than 0.5 mm long. The method proposed takes the simplicity of electrical potential technique and can monitor surface crack of nearly all kinds of structures precisely. The results of this paper may form the basis of a new crack monitoring system.
2011, 25(4).
Abstract:
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton’s iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton’s iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
2011, 25(4).
Abstract:
As the market competition among enterprises grows intensively and the demand for high quality products increases rapidly, product quality inspection and control has become one of the most important issues of manufacturing, and improving the efficiency and accuracy of inspection is also one of problems which enterprises must solve. It is particularly important to establish rational inspection planning for parts before inspecting product quality correctly. The traditional inspection methods have been difficult to satisfy the requirements on the speed and accuracy of modern manufacturing, so CAD-based computer-aided inspection planning (CAIP) system with the coordinate measuring machines (CMM) came into being. In this paper, an algorithm for adaptive sampling and collision-free inspection path generation is proposed, aiming at the CAD model-based inspection planning for coordinate measuring machines (CMM). Firstly, using the method of step adaptive subdivision and iteration , the sampling points for the specified number with even distribution will be generated automatically. Then, it generates the initial path by planning the inspection sequence of measurement points according to the values of each point’s weight sum of parameters, and detects collision by constructing section lines between the probe swept-volume surfaces and the part surfaces, with axis-aligned bounding box (AABB) filtering to improve the detection efficiency. For collided path segments, it implements collision avoidance firstly aiming at the possible outer-circle features, and then at other collisions, for which the obstacle-avoiding movements are planned with the heuristic rules, and combined with a designed expanded AABB to set the obstacle-avoiding points. The computer experimental results show that the presented algorithm can plan sampling points’ locations with strong adaptability for different complexity of general surfaces, and generate efficient optimum path in a short time and avoid collision effectively.
As the market competition among enterprises grows intensively and the demand for high quality products increases rapidly, product quality inspection and control has become one of the most important issues of manufacturing, and improving the efficiency and accuracy of inspection is also one of problems which enterprises must solve. It is particularly important to establish rational inspection planning for parts before inspecting product quality correctly. The traditional inspection methods have been difficult to satisfy the requirements on the speed and accuracy of modern manufacturing, so CAD-based computer-aided inspection planning (CAIP) system with the coordinate measuring machines (CMM) came into being. In this paper, an algorithm for adaptive sampling and collision-free inspection path generation is proposed, aiming at the CAD model-based inspection planning for coordinate measuring machines (CMM). Firstly, using the method of step adaptive subdivision and iteration , the sampling points for the specified number with even distribution will be generated automatically. Then, it generates the initial path by planning the inspection sequence of measurement points according to the values of each point’s weight sum of parameters, and detects collision by constructing section lines between the probe swept-volume surfaces and the part surfaces, with axis-aligned bounding box (AABB) filtering to improve the detection efficiency. For collided path segments, it implements collision avoidance firstly aiming at the possible outer-circle features, and then at other collisions, for which the obstacle-avoiding movements are planned with the heuristic rules, and combined with a designed expanded AABB to set the obstacle-avoiding points. The computer experimental results show that the presented algorithm can plan sampling points’ locations with strong adaptability for different complexity of general surfaces, and generate efficient optimum path in a short time and avoid collision effectively.
2011, 25(4).
Abstract:
Pilot needs to process lots of information when operating an aircraft, and reasonable information coding can greatly improve the correct rate and speed of information identification. At present, related researches are mainly performed in the laboratory, and the experiment method for abstract simulation is often used to research single digit information coding. The research results demonstrate a lack of systematization and applicability. The present study is based upon information coding methods of human-machine interface under real time in flight simulators. Subjects are required to perform an aircraft landing and the corresponding experiment task. The correct rate and reaction time are chosen as the performance evaluation indexes, combined with eye movement data. The advantages and disadvantages of different information coding methods are also evaluated and analyzed. The experiment results demonstrate that the effect of color coding on the correct rate of information identification is not significant, but the effect on the speed of information identification is obviously significant. The study demonstrates that on a black background, red, green and yellow are suitable colors for color coding, but blue is not. The position of information on the performance of information identification is also significant. The center of the interface is better than the edge, and the left position is superior to the right. The impact of language and a person’s mother tongue should also be considered in practical applications. The study shows that the Chinese has a higher correct rate of identification than English. As the experiment research method in the present study is based on flight simulator, the actual utility and application value can be guaranteed. The research results have the ability to offer improvements in ergonomic reference for cockpit human-machine interface design.
Pilot needs to process lots of information when operating an aircraft, and reasonable information coding can greatly improve the correct rate and speed of information identification. At present, related researches are mainly performed in the laboratory, and the experiment method for abstract simulation is often used to research single digit information coding. The research results demonstrate a lack of systematization and applicability. The present study is based upon information coding methods of human-machine interface under real time in flight simulators. Subjects are required to perform an aircraft landing and the corresponding experiment task. The correct rate and reaction time are chosen as the performance evaluation indexes, combined with eye movement data. The advantages and disadvantages of different information coding methods are also evaluated and analyzed. The experiment results demonstrate that the effect of color coding on the correct rate of information identification is not significant, but the effect on the speed of information identification is obviously significant. The study demonstrates that on a black background, red, green and yellow are suitable colors for color coding, but blue is not. The position of information on the performance of information identification is also significant. The center of the interface is better than the edge, and the left position is superior to the right. The impact of language and a person’s mother tongue should also be considered in practical applications. The study shows that the Chinese has a higher correct rate of identification than English. As the experiment research method in the present study is based on flight simulator, the actual utility and application value can be guaranteed. The research results have the ability to offer improvements in ergonomic reference for cockpit human-machine interface design.
2011, 25(4).
Abstract:
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
2011, 25(4).
Abstract:
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.
2011, 25(4).
Abstract:
A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.
A stranded wires helical spring is formed of a multilayer and coaxial strand of several wires twisted together with the same direction of spiral. Compared with the conventional single wire spring, the stranded wires helical spring has the notable predominance in strength, damping and vibration reduction, which is usually used in aircraft engines, automatic weapons, etc. However, due to its complicated structure, the precise computation of its strength and rigidity need be a correct mathematical model, which then will be imported to finite element analysis software for solutions. Equations on solving geometric parameters, such as external diameters of strands and screw pitches of wires, are put forward in the paper. It also proposes a novel methodology on solving geometric parameters and establishing entity models of the stranded wires helical spring, which provides foundation of computing mechanical parameters by FEA. Then mathematical models on the centre line of the strand and the surface curve of each wire, after closing two ends in a spring, are proposed. Finally, geometric parameters are solved in a case study, and a 3D entity model of a spring with 3 layers and 16 wires is established, which has validated the accuracy of the proposed methodology and the 3D entity mathematical model. The method provides a new way to design stranded wire helical spring.
2011, 25(4).
Abstract:
Increasing global concern about the environment is bringing regulatory (European directives) and consumer (“green products”) pressure on the electronics industry in Europe and Japan to reduce or completely eliminate the use of lead (Pb) in products. Among all lead-free solder alloys, SnAgCu solder system, which has better thermo-mechanical properties compared with those of SnPb solder, is proven to be one of the promising candidates for electronic assembly. Previous work also revealed that adding a small amount of rare earth Ce into SnAgCu solder can visibly improve the properties and inhibit the excessive growth of the intermetallic compound layer. Thermal fatigue properties of SnAgCuCe soldered joints in QFP devices under thermal conditions have been investigated by finite element method and experiments. Based on creep model of low stress and high stress, corresponding creep subroutine was established for simulating the stress and strain response of SnAgCuCe soldered joint from –55 ℃ to 125 ℃, and fatigue life was calculated using creep fatigue life prediction equation. Moreover, thermal cycling experiments were conducted, the experimental results were found to be close to the simulated results. In addition, the tensile force of SnAgCuCe soldered joints decreased with increasing number of thermal cycles, and the fracture mechanism transformed from toughness fracture to brittle intergranular fracture. Moreover the tensile force changes and fracture microstructure evolution could benefit the quantitative evaluations of the mechanical performances of lead-free soldered joints under thermal cycling loadings.
Increasing global concern about the environment is bringing regulatory (European directives) and consumer (“green products”) pressure on the electronics industry in Europe and Japan to reduce or completely eliminate the use of lead (Pb) in products. Among all lead-free solder alloys, SnAgCu solder system, which has better thermo-mechanical properties compared with those of SnPb solder, is proven to be one of the promising candidates for electronic assembly. Previous work also revealed that adding a small amount of rare earth Ce into SnAgCu solder can visibly improve the properties and inhibit the excessive growth of the intermetallic compound layer. Thermal fatigue properties of SnAgCuCe soldered joints in QFP devices under thermal conditions have been investigated by finite element method and experiments. Based on creep model of low stress and high stress, corresponding creep subroutine was established for simulating the stress and strain response of SnAgCuCe soldered joint from –55 ℃ to 125 ℃, and fatigue life was calculated using creep fatigue life prediction equation. Moreover, thermal cycling experiments were conducted, the experimental results were found to be close to the simulated results. In addition, the tensile force of SnAgCuCe soldered joints decreased with increasing number of thermal cycles, and the fracture mechanism transformed from toughness fracture to brittle intergranular fracture. Moreover the tensile force changes and fracture microstructure evolution could benefit the quantitative evaluations of the mechanical performances of lead-free soldered joints under thermal cycling loadings.
2011, 25(4).
Abstract:
A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.
A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.
2011, 25(4).
Abstract:
Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products.
Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products.
2011, 25(4).
Abstract:
Dielectric elastomer actuator (DEA) show promise for mechatronic applications due to the advantages of dielectric elastomer, such as lightweight, flexible, low cost, high strain, etc, and many configurations of DEAs have been demonstrated. As a kind of linear actuator, cone DEAs are studied in some laboratory prototypes due to easy manufacturing, however, their performance have not been exploited fully. Based on the working principle of DEA, a four-bar linkage mechanism is designed to provide negative stiffness preload, which can increase displacement output of actuator (outer diameter 100 mm) to 17 mm. Three cone actuating units are assembled in parallel to enhance the maximum force output to 5.07 N. Loading experiments of actuator in forward and backward strokes are performed, the experimental results show that backward stroke has stronger actuating capability than forward stroke, accordingly application of actuator is recommended. Four factors rather than applied voltage, i.e., number of actuating units, pre-stretch ratio, inner diameter, and outer diameter, are determined as influencing factors for Taguchi method. Then the performance objectives of actuator, i.e., displacement output, maximum force output, and maximum work in backward stroke, are investigated based on L9(34) Taguchi orthogonal design. The mean signal-to-noise (SN) ratio based on the larger-the-better criterion is calculated according to the acquired displacement and force output. Analytical results show that outer diameter has the most significant influence on displacement output, and maximum force out and work output are influenced most by number of actuating units. Inner diameter also has an important effect on the performance objectives of actuator, while pre-stretch ratio has the least influence. The proposed performance investigation is helpful for the design and application of cone actuator in mechatronic system.
Dielectric elastomer actuator (DEA) show promise for mechatronic applications due to the advantages of dielectric elastomer, such as lightweight, flexible, low cost, high strain, etc, and many configurations of DEAs have been demonstrated. As a kind of linear actuator, cone DEAs are studied in some laboratory prototypes due to easy manufacturing, however, their performance have not been exploited fully. Based on the working principle of DEA, a four-bar linkage mechanism is designed to provide negative stiffness preload, which can increase displacement output of actuator (outer diameter 100 mm) to 17 mm. Three cone actuating units are assembled in parallel to enhance the maximum force output to 5.07 N. Loading experiments of actuator in forward and backward strokes are performed, the experimental results show that backward stroke has stronger actuating capability than forward stroke, accordingly application of actuator is recommended. Four factors rather than applied voltage, i.e., number of actuating units, pre-stretch ratio, inner diameter, and outer diameter, are determined as influencing factors for Taguchi method. Then the performance objectives of actuator, i.e., displacement output, maximum force output, and maximum work in backward stroke, are investigated based on L9(34) Taguchi orthogonal design. The mean signal-to-noise (SN) ratio based on the larger-the-better criterion is calculated according to the acquired displacement and force output. Analytical results show that outer diameter has the most significant influence on displacement output, and maximum force out and work output are influenced most by number of actuating units. Inner diameter also has an important effect on the performance objectives of actuator, while pre-stretch ratio has the least influence. The proposed performance investigation is helpful for the design and application of cone actuator in mechatronic system.
2011, 25(4).
Abstract:
Slotting strategy heavily influences the throughput and operational cost of automated order picking system with multiple dispenser types, which is called the complex automated order picking system (CAOPS). Existing research either focuses on one aspect of the slotting optimization problem or only considers one part of CAOPS, such as the Low-volume Dispensers, to develop corresponding slotting strategies. In order to provide a comprehensive and systemic approach, a fluid-based slotting strategy is proposed in this paper. The configuration of CAOPS is presented with specific reference to its fast-picking and restocking subsystems. Based on extended fluid model, a nonlinear mathematical programming model is developed to determine the optimal volume allotted to each stock keeping unit (SKU) in a certain mode by minimize the restocking cost of that mode. Conclusion from the allocation model is specified for the storage modules of high-volume dispensers and low-volume dispensers. Optimal allocation of storage resources in the fast-picking area of CAOPS is then discussed with the aim of identifying the optimal space of each picking mode. The SKU assignment problem referring to the total restocking cost of CAOPS is analyzed and a greedy heuristic with low time complexity is developed according to the characteristics of CAOPS. Real life application from the tobacco industry is presented in order to exemplify the proposed slotting strategy and assess the effectiveness of the developed methodology. Entry-item-quantity (EIQ) based experiential solutions and proposed-model-based near-optimal solutions are compared. The comparison results show that the proposed strategy generates a savings of over 18% referring to the total restocking cost over one-year period. The strategy proposed in this paper, which can handle the multiple dispenser types, provides a practical quantitative slotting method for CAOPS and can help picking-system-designers make slotting decisions efficiently and effectively.
Slotting strategy heavily influences the throughput and operational cost of automated order picking system with multiple dispenser types, which is called the complex automated order picking system (CAOPS). Existing research either focuses on one aspect of the slotting optimization problem or only considers one part of CAOPS, such as the Low-volume Dispensers, to develop corresponding slotting strategies. In order to provide a comprehensive and systemic approach, a fluid-based slotting strategy is proposed in this paper. The configuration of CAOPS is presented with specific reference to its fast-picking and restocking subsystems. Based on extended fluid model, a nonlinear mathematical programming model is developed to determine the optimal volume allotted to each stock keeping unit (SKU) in a certain mode by minimize the restocking cost of that mode. Conclusion from the allocation model is specified for the storage modules of high-volume dispensers and low-volume dispensers. Optimal allocation of storage resources in the fast-picking area of CAOPS is then discussed with the aim of identifying the optimal space of each picking mode. The SKU assignment problem referring to the total restocking cost of CAOPS is analyzed and a greedy heuristic with low time complexity is developed according to the characteristics of CAOPS. Real life application from the tobacco industry is presented in order to exemplify the proposed slotting strategy and assess the effectiveness of the developed methodology. Entry-item-quantity (EIQ) based experiential solutions and proposed-model-based near-optimal solutions are compared. The comparison results show that the proposed strategy generates a savings of over 18% referring to the total restocking cost over one-year period. The strategy proposed in this paper, which can handle the multiple dispenser types, provides a practical quantitative slotting method for CAOPS and can help picking-system-designers make slotting decisions efficiently and effectively.
2011, 25(4).
Abstract:
Developing a general mobility method/formula is a hot topic lasting for more than 150 years in kinematics. It is necessary to apply any mobility method to puzzling overconstrained mechanisms for verification of its generality. Altmann linkages are such recognized puzzling mechanisms that their mobility analysis is of important significance. A necessary condition for judging a general mobility method is that the method can be fit for Altmann linkages. Firstly, this study classes Altmann linkages into 17 types in terms of the numbers and types of kinematic pairs, and then Altmann overconstrained linkages are further classified into 4 types. Secondly, the mobility of Altmann overconstrained linkages is systematically analyzed by the Modified Grübler-Kutzbach criterion based on screw theory, where passive freedoms are defined as limb passive freedoms and mechanism passive freedoms. In addition, the full-cycle mobility is judged, which overcomes the shortcoming of instantaneous property of screw theory. It is shown that Modified Grübler-Kutzbach criterion not only obtains the correct numerical mobility, but also gives the mobility character by resolving reciprocal screws for the constraint system. This study lays the foundation of verification for the generality of Modified Grübler-Kutzbach criterion. Besides, Altmann overconstrained linkages almost comprise all kinds of modern parallel mechanisms and some classical mechanisms, which provides an important reference for mechanism mobility calculation.
Developing a general mobility method/formula is a hot topic lasting for more than 150 years in kinematics. It is necessary to apply any mobility method to puzzling overconstrained mechanisms for verification of its generality. Altmann linkages are such recognized puzzling mechanisms that their mobility analysis is of important significance. A necessary condition for judging a general mobility method is that the method can be fit for Altmann linkages. Firstly, this study classes Altmann linkages into 17 types in terms of the numbers and types of kinematic pairs, and then Altmann overconstrained linkages are further classified into 4 types. Secondly, the mobility of Altmann overconstrained linkages is systematically analyzed by the Modified Grübler-Kutzbach criterion based on screw theory, where passive freedoms are defined as limb passive freedoms and mechanism passive freedoms. In addition, the full-cycle mobility is judged, which overcomes the shortcoming of instantaneous property of screw theory. It is shown that Modified Grübler-Kutzbach criterion not only obtains the correct numerical mobility, but also gives the mobility character by resolving reciprocal screws for the constraint system. This study lays the foundation of verification for the generality of Modified Grübler-Kutzbach criterion. Besides, Altmann overconstrained linkages almost comprise all kinds of modern parallel mechanisms and some classical mechanisms, which provides an important reference for mechanism mobility calculation.
2011, 25(4).
Abstract:
Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.
Arc pressure is one of the key factors for variable polarity plasma arc(VPPA) and welding pool formation. In this paper, VPPA pressure is measured by pressure transducer and U-tube barometer methods, and advantages and disadvantages of the two methods are compared. The effects of welding parameters, including with straight polarity(SP) current, reverse polarity(RP) current, time ratio of SP to RP, plasma gas flow rate, on VPPA pressure are investigated by using an orthogonal design. The experimental results indicate that the influencing degree of the welding parameters are in the order of plasma gas flow rate, SP current, time ratio of SP to RP, RP current. These results are important to researches of VPPA welding process and its mechanism. The physics behavior of VPPA is taken into account when the above influence mechanisms are analyzed. Firstly, according to the mechanism of the cooling compression to the arc, the compression to VPPA is enhanced with the increase of plasma gas flow, so the VPPA pressure would increase obviously. Secondly, although the temperature of VPPA is as a function of the welding current, the radius of VPPA is also enhanced. So the effects of SP current on VPPA pressure are inferior to the effects of plasma gas flow. Thirdly, VPPA pressure increases as a function of time ratio of SP to RP because the frequency of welding current influences the arc pressure to the some degree; Finally, the RP intervals are farther less than the SP intervals, so the influence to the pressure is minimal.
2011, 25(4).
Abstract:
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
2011, 25(4).
Abstract:
With the development of lead-free solder alloys, the investiagtion focusing on the relibility of lead-free solders are essential. Since the reliability database of lead-free solder joints needs to be further supplied, the creep behavior of SnAgCu soldered joints on Quad Flat Package (QFP) devices under thermo cycling load are studied in this paper, compared to conventional SnPb solder, by finite element simulation based on Garofalo-Arrhenius creep model. Meanwhile, the mechanical properties of SnAgCu and SnPb soldered joints in the pitches of QFP devices are also carried out by means of tensile test. The results indicate that the values of strain and stress of SnAgCu soldered joints were all smaller than those of SnPb under thermal cycling, and the tensile strength of the joints soldered with SnAgCu solder was higher than that of SnPb, which means the reliability of the joints soldered with SnAgCu solder is better than SnPb soldered joints. As the fracture surface morphology of the soldered joints compared, SnAgCu soldered joint presented ductile fracture, while the fracture mechanism of SnPb solder joints displayed both brittle and ductile fracture. Above all, the experimental results is in accord with that of simulation, which will provide guidance for reliability study and application of lead-free solders.
With the development of lead-free solder alloys, the investiagtion focusing on the relibility of lead-free solders are essential. Since the reliability database of lead-free solder joints needs to be further supplied, the creep behavior of SnAgCu soldered joints on Quad Flat Package (QFP) devices under thermo cycling load are studied in this paper, compared to conventional SnPb solder, by finite element simulation based on Garofalo-Arrhenius creep model. Meanwhile, the mechanical properties of SnAgCu and SnPb soldered joints in the pitches of QFP devices are also carried out by means of tensile test. The results indicate that the values of strain and stress of SnAgCu soldered joints were all smaller than those of SnPb under thermal cycling, and the tensile strength of the joints soldered with SnAgCu solder was higher than that of SnPb, which means the reliability of the joints soldered with SnAgCu solder is better than SnPb soldered joints. As the fracture surface morphology of the soldered joints compared, SnAgCu soldered joint presented ductile fracture, while the fracture mechanism of SnPb solder joints displayed both brittle and ductile fracture. Above all, the experimental results is in accord with that of simulation, which will provide guidance for reliability study and application of lead-free solders.
2011, 25(4).
Abstract:
Variable nozzle turbine (VNT) has become a popular variable geometry turbine (VGT) technology for the diesel engine application. Nozzle clearance, which can’t be avoided on the hub and shroud side of the VNT turbine due to the pivoting stators, can lead to turbine performance deterioration. However, its mechanism is still not clear. In this paper, numerical investigation, which is validated by experiment, is carried out to study the mechanism of the nozzle clearance’s effect on the turbine performance. Firstly, performance of the mixed flow turbine with fixed nozzle clearances tested on flow bench. Performance of the tested turbine with the same nozzle clearance is numerically simulated. The numerical result agrees well with the test data, which proves correct of the numerical method. Then the turbine performance with different nozzle clearances is numerically analyzed. The research showed that with nozzle clearance, flow loss in the nozzle increases at first and it reaches the maximum value when the clearance ratio is 5%. Flow at the exit of the nozzle becomes less uniform with nozzle clearance. The negative incidence angle of the rotor also increases with nozzle clearance and leads to more incidence angle loss in the rotor. The low energy fluid formed in the nozzle due to the nozzle clearance migrates from hub to shroud side in the rotor, which is another main reason for the rotor’s performance degradation. The present research exposed the mechanism of the dramatically decrease of the turbine performance with nozzle clearance: (a) The loss associated with the nozzle leakage increases with the nozzle clearance; (b) The flow loss grows up quickly in the rotor due to the incidence angle loss and migration of the low energy fluid from hub to shroud side.
Variable nozzle turbine (VNT) has become a popular variable geometry turbine (VGT) technology for the diesel engine application. Nozzle clearance, which can’t be avoided on the hub and shroud side of the VNT turbine due to the pivoting stators, can lead to turbine performance deterioration. However, its mechanism is still not clear. In this paper, numerical investigation, which is validated by experiment, is carried out to study the mechanism of the nozzle clearance’s effect on the turbine performance. Firstly, performance of the mixed flow turbine with fixed nozzle clearances tested on flow bench. Performance of the tested turbine with the same nozzle clearance is numerically simulated. The numerical result agrees well with the test data, which proves correct of the numerical method. Then the turbine performance with different nozzle clearances is numerically analyzed. The research showed that with nozzle clearance, flow loss in the nozzle increases at first and it reaches the maximum value when the clearance ratio is 5%. Flow at the exit of the nozzle becomes less uniform with nozzle clearance. The negative incidence angle of the rotor also increases with nozzle clearance and leads to more incidence angle loss in the rotor. The low energy fluid formed in the nozzle due to the nozzle clearance migrates from hub to shroud side in the rotor, which is another main reason for the rotor’s performance degradation. The present research exposed the mechanism of the dramatically decrease of the turbine performance with nozzle clearance: (a) The loss associated with the nozzle leakage increases with the nozzle clearance; (b) The flow loss grows up quickly in the rotor due to the incidence angle loss and migration of the low energy fluid from hub to shroud side.
2011, 25(4).
Abstract:
The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system’s robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system’s robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.
The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system’s robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system’s robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.