2013 Vol.26(1)

Display Mode:          |     

Analysis of Oil Consumption in Cylinder of Diesel Engine for Optimization of Piston Rings
2013, 27(1).
[Abstract](2636) [PDF 586KB](388)
Abstract:
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.
Precision Design for Machine Tool Based on Error Prediction
2013, 27(1).
[Abstract](2638) [PDF 308KB](130)
Abstract:
Digitization precision analysis is an important tool to ensure the design precision of machine tool currently. The correlative research about precision modeling and analysis mainly focuses on the geometry precision and motion precision of machine tool, and the forming motion precision of workpiece surface. For the machine tool with complex forming motion, there is not accurate corresponding relationship between the existing criterion on precision design and the machining precision of workpiece. Therefore, a design scheme on machine tool precision based on error prediction is proposed, which is divided into two-stage digitization precision analysis crucially. The first stage aims at the technology system to complete the precision distribution and inspection from the workpiece to various component parts of technology system and achieve the total output precision of machine tool under the specified machining precision; the second stage aims at the machine tool system to complete the precision distribution and inspection from the output precision of machine tool to the machine tool components. This article serves YK3610 gear hobber as the example to describe the error model of two systems and basic application method, and the practical cutting precision of this machine tool achieves to 5-4-4 grade. The proposed method can provide reliable guidance to the precision design of machine tool with complex forming motion.
Adaptive PI Control Strategy for Flat Permanent Magnet Linear Synchronous Motor Vibration Suppression
2013, 27(1).
[Abstract](2563) [PDF 725KB](156)
Abstract:
Due to low damping ratio, flat permanent magnet linear synchronous motor’s vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor’s motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor’s vibration without affecting the motor’s performance.
Multi-segment and Multi-ply Overlapping Process of Multi Coupled Activities Based on Valid Information Evolution
2013, 27(1).
[Abstract](2601) [PDF 301KB](59)
Abstract:
Complex product development will inevitably face the design planning of the multi-coupled activities, and overlapping these activities could potentially reduce product development time, but there is a risk of the additional cost. Although the downstream task information dependence to the upstream task is already considered in the current researches, but the design process overall iteration caused by the information interdependence between activities is hardly discussed; especially the impact on the design process’ overall iteration from the valid information accumulation process. Secondly, most studies only focus on the single overlapping process of two activities, rarely take multi-segment and multi-ply overlapping process of multi coupled activities into account; especially the inherent link between product development time and cost which originates from the overlapping process of multi coupled activities. For the purpose of solving the above problems, as to the insufficiency of the accumulated valid information in overlapping process, the function of the valid information evolution (VIE) degree is constructed. Stochastic process theory is used to describe the design information exchange and the valid information accumulation in the overlapping segment, and then the planning models of the single overlapping segment are built. On these bases, by analyzing overlapping processes and overlapping features of multi-coupling activities, multi-segment and multi-ply overlapping planning models are built; by sorting overlapping processes and analyzing the construction of these planning models, two conclusions are obtained: (1) As to multi-segment and multi-ply overlapping of multi coupled activities, the total decrement of the task set development time is the sum of the time decrement caused by basic overlapping segments, and minus the sum of the time increment caused by multiple overlapping segments; (2) the total increment of development cost is the sum of the cost increment caused by all overlapping process. And then, based on overlapping degree analysis of these planning models, by the VIE degree function, the four lemmas theory proofs are represented, and two propositions are finally proved: (1) The multi-ply overlapping of the multi coupled activities will weaken the basic overlapping effect on the development cycle time reduction (2) Overlapping the multi coupled activities will decrease product development cycle, but increase product development cost. And there is trade-off between development time and cost. And so, two methods are given to slacken and eliminate multi-ply overlapping effects. At last, an example about a vehicle upper subsystem design illustrates the application of the proposed models; compared with a sequential execution pattern, the decreasing of development cycle (22%) and the increasing of development cost (3%) show the validity of the method in the example. The proposed research not only lays a theoretical foundation for correctly planning complex product development process, but also provides specific and effective operation methods for overlapping multi coupled activities.
Synergistic Effect between Nano-ceramic Lubricating Additives and Electroless Deposited Ni-W-P Coating
2013, 27(1).
[Abstract](2458) [PDF 345KB](116)
Abstract:
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
Flow Dynamics of a Spiral-groove Dry-gas Seal
2013, 27(1).
[Abstract](2308) [PDF 376KB](440)
Abstract:
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
Temperature Variable Optimization for Precision Machine Tool Thermal Error Compensation on Optimal Threshold
2013, 27(1).
[Abstract](2322) [PDF 309KB](217)
Abstract:
Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 m. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation.
Fluid-solid Interaction Model for Hydraulic Reciprocating O-ring Seals
2013, 27(1).
[Abstract](2355) [PDF 252KB](195)
Abstract:
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
Design and Analysis of a New AUV’s Sliding Control System Based on Dynamic Boundary Layer
2013, 27(1).
[Abstract](2345) [PDF 559KB](135)
Abstract:
The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid, which bring difficult to the stability of the AUV’s control system. In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV’s attitude control and the disturbances caused by the external marine environment, a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed, which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions. In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV’s attitude control, the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects. Then the impacts of system parameters, rudder actuator’s constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer. The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV’s attitude control through dynamically adjusting the sliding boundary layer thickness. The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator, which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.
Fractal Characteristics and Microstructure Evolution of Magnetron Sputtering Cu Thin Films
2013, 27(1).
[Abstract](2315) [PDF 382KB](260)
Abstract:
How to describe surface morphology characteristic and microstructure evolution are the hottest researches of current thin film researches. But in traditional characterization of surface morphology, the roughness parameters are scale related. And the microstructure evolution of thin film during post-treatment is usually not considered in detail. To give a better understanding of the roughness of thin films topography, fractal method is carried out. In addition, microstructure evolution of thin films is analyzed based on the crystallography and energy theory. Cu thin films are deposited on Si (100) substrates by magnetron sputtering, and then annealed at different temperatures. Surface topography is characterized by atomic force microscope (AFM). Triangular prism surface area (TPSA) algorithm is used to calculate the fractal dimension of the AFM images. Apparent scale effect exists between the surface morphology roughness and film thickness. Relationship between the fractal dimension and roughness is analyzed by linear regression method and linear relationship exists between fractal dimension and surface roughness root mean square (RMS). Fractal dimension can be characterized as a scale independence parameter to represent the complex degree and roughness level of surface. With the increase of annealing temperature, surface roughness and fractal dimension decrease. But when the annealing temperature exceeds the recrystallization temperature, due to the agglomeration and coalescence of Cu grain, surface roughness and fractal dimension increase. Scale effect and changing regularity of grain growth and shape evolution for different film thickness under different annealing temperatures are analyzed. Based on minimum total free energy, regularity of grain growth and changing is proposed. The proposed research has some theory significance and applicative value of Cu interconnect process and development of MEMS.
Coupled Dynamic Modeling of Rolls Model and Metal Model for Four High Mill Based on Strip Crown Control
2013, 27(1).
[Abstract](2343) [PDF 370KB](153)
Abstract:
The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the studies about the dynamic modeling of the rolling mill system mainly focus on the dynamic simulation for the strip thickness control system, the dynamic characteristics of the strip along the width direction and that of the rolls along axial direction are not considered. In order to study the dynamic changes of strip crown in the rolling process, the dynamic simulation model based on strip crown control is established. The work roll and backup roll are considered as elastic continuous bodies and the work roll and backup roll are joined by a Winkler elastic layer. The rolls are considered as double freely supported beams. The change rate of roll gap is taken into consideration in the metal deformation, based on the principle of dynamic conservation of material flow, the two dimensional dynamic model of metal is established. The model of metal deformation provides exciting force for the rolls dynamic model, and the rolls dynamic model and metal deformation model couple together. Then, based on the two models, the dynamic model of rolling mill system based on strip crown control is established. The Newmark-β method is used to solve the problem, and the dynamic changes of these parameters are obtained as follows: (1) The bending of work roll and backup roll changes with time; (2) The strip crown changes with time; (3) The distribution of rolling force changes with time. Take some cold tandem rolling mill as subject investigated, simulation results and the comparisons with experimental results show that the dynamic model built is rational and correct. The proposed research provides effective theory for optimization of device and technological parameters and development of new technology, plays an important role to improve the strip control precision and strip shape quality.
Vision-based Stabilization of Nonholonomic Mobile Robots by Integrating Sliding-mode Control and Adaptive Approach
2013, 27(1).
[Abstract](2357) [PDF 232KB](105)
Abstract:
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
Reconfigurable Modeling Technology of Similar-structure Products Configuration Design
2013, 27(1).
[Abstract](2341) [PDF 358KB](81)
Abstract:
The product configuration modeling is a key technology to realize configuration design. Most of the researches were mainly conducted focusing on how to establish a product configuration model, but were short of the consideration about the application scope and dynamic change features. In this paper, the reconfigurable modeling technology of similar-structure products configuration design is studied to enhance the generality and diversity of product configuration models, and to facilitate the dynamic upgrade of configuration models. The configuration components of products with similar structures are divided into sharable configuration components, essential configuration components and optional configuration components, so the construction of reconfigurable model of configuration design can be converted into the set operation of configuration components. The horizontal adjusting reconstruction of configuration model is carried out through the adding, replacing and deleting of configuration components, the vertical adjusting reconstruction of configuration model is carried out through the parametric deformation of configuration components, and the variable topological configuration model reconstruction can be realized through the transformation of partial structure of configuration components. Finally, NC machine products are used as an example to analyze and verify the reconfigurable modeling technology of products with similar structures. The speed of NC machine configuration design is found to be improved, and the number of NC machine configuration design models is decreased. And the reconfigurable design system of NC machine products is developed. The proposed modeling technology provides references for the processes, methods and steps of model reconstruction.
Real Gas Effects on Charging and Discharging Processes of High Pressure Pneumatics
2013, 27(1).
[Abstract](2377) [PDF 261KB](225)
Abstract:
The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.
Algorithm for Detecting Volumetric Geometric Accuracy of NC Machine Tool by Laser Tracker
2013, 27(1).
[Abstract](2396) [PDF 254KB](110)
Abstract:
Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool.
Driving and Braking Control of PM Synchronous Motor Based on Low-resolution Hall Sensor for Battery Electric Vehicle
2013, 27(1).
[Abstract](2345) [PDF 612KB](738)
Abstract:
Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.
Accuracy Analysis of Stewart Platform Based on Interval Analysis Method
2013, 27(1).
[Abstract](2367) [PDF 477KB](360)
Abstract:
A Stewart platform is introduced in the 500 m aperture spherical radio telescope(FAST) as an accuracy adjustable mechanism for feed receivers. Accuracy analysis is the basis of accuracy design. However, a rapid and effective accuracy analysis method for parallel manipulator is still needed. In order to enhance solution efficiency, an interval analysis method(IA method) is introduced to solve the terminal error bound of the Stewart platform with detailed solution path. Taking a terminal pose of the Stewart platform in FAST as an example, the terminal error is solved by the Monte Carlo method(MC method) by 4 980 s, the stochastic mathematical method(SM method) by 0.078 s, and the IA method by 2.203 s. Compared with MC method, the terminal error by SM method leads a 20% underestimate while the IA method can envelop the real error bound of the Stewart platform. This indicates that the IA method outperforms the other two methods by providing quick calculations and enveloping the real error bound of the Stewart platform. According to the given structural error of the dimension parameters of the Stewart platform, the IA method gives a maximum position error of 19.91 mm and maximum orientation error of 0.534°, which suggests that the IA method can be used for accuracy design of the Stewart platform in FAST. The IA method presented is a rapid and effective accuracy analysis method for Stewart platform.
Effect of Honeycomb Seals on Loss Characteristics in Shroud Cavities of an Axial Turbine
2013, 27(1).
[Abstract](2385) [PDF 495KB](349)
Abstract:
The loss in efficiency due to shroud leakage or tip clearance flow accounts for a substantial part of the overall losses in turbomachinery. It is important to identify the leakage loss characteristics in order to optimize turbomachinery. At present, little information is available in the open literature concerning the effect of honeycomb seals on the loss characteristics in shroud cavities of an axial turbine, despite of the widespread use of the honeycomb seals. Therefore, interaction between rotor labyrinth seal leakage flow with and without honeycomb facings and main flow is investigated to provide the loss characteristics of the mixing process of the re-entering leakage flow into the main flow. The effects of honeycomb seals on the flow in shroud cavities and interaction with the main flow are analyzed. An additional study on the impact of subtle shroud cavity exit geometry is also presented. The investigation results indicate that the honeycomb seal affects the over tip leakage flow and reduces mixing losses when compared to the solid labyrinth seal. The leakage flow interactions with the main flow have considerably changed the flow fields in the endwall regions. The proposed research reveals the effects of honeycomb seals on the loss characteristics in shroud cavities and the impact of subtle shroud cavity exit geometry, and it is helpful for the design optimization of turbomachinery.
Numerical Simulation and Analysis of Solid-liquid Two-phase Flow in Centrifugal Pump
2013, 27(1).
[Abstract](2389) [PDF 770KB](341)
Abstract:
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k- two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
Numerical Prediction and Performance Experiment in a Deep-well Centrifugal Pump with Different Impeller Outlet Width
2013, 27(1).
[Abstract](2372) [PDF 482KB](276)
Abstract:
The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.
Unbalance Vibratory Displacement Compensation for Active Magnetic Bearings
2013, 27(1).
[Abstract](1822) [PDF 433KB](225)
Abstract:
As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (AILC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor  influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects. As a feed-forward compensation controller, AILC can provide one unknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative learning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.
Dynamic Responses of Rotor Drops onto Double-decker Catcher Bearing
2013, 27(1).
[Abstract](1840) [PDF 457KB](145)
Abstract:
In an active magnetic bearing (AMB) system, the catcher bearings (CBs) are indispensable to protect the rotor and stator in case the magnetic bearings fail. Most of the former researches associated with CBs are mainly focused on the dynamic responses of the rotor drops onto traditional single-decker catcher bearings (SDCBs). But because of the lower limited speed of SDCB, it cannot withstand the ultra high speed rotation after rotor drop. In this paper, based on the analysis of the disadvantages of SDCBs, a new type of double-decker catcher bearings (DDCBs) is proposed to enhance the CB work performance in AMB system. In order to obtain the accurate rotor movements before AMB failure, the dynamic characteristics of AMB are theoretically derived. Detailed simulation models containing rigid rotor model, contact model between rotor and inner race, DDCB force model as well as heating model after rotor drop are established. Then, using those established models the dynamic responses of rotor drops onto DDCBs and SDCBs are respectively simulated. The rotor orbits, contact forces, spin speeds of various parts and heat energies after AMB failure are mainly analyzed. The simulation results show that DDCBs can effectively improve the CBs limit rotational speed and reduce the following vibrations, impacts and heating. Finally, rotor drop experiments choosing different types of CBs are carried out on the established AMB test bench. Rotor orbits, inner race temperatures as well as the rotating speeds of both inner race and intermediate races after rotor drop are synchronously measured. The experiment results verify the advantages of DDCB and the correctness of theoretical analysis. The studies provide certain theoretical and experimental references for the application of DDCBs in AMB system.
Fractal Prediction Model of Thermal Contact Conductance of Rough Surfaces
2013, 27(1).
[Abstract](1838) [PDF 318KB](290)
Abstract:
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young’s elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
Numerical Analysis of Nd:YAG Pulsed Laser Polishing CVD Self-standing Diamond Film
2013, 27(1).
[Abstract](1823) [PDF 572KB](107)
Abstract:
Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.
Topology Recovery Technique for Complex Freeform Surface Model after Local Geometry Repair
2013, 27(1).
[Abstract](1863) [PDF 424KB](82)
Abstract:
Intersections and discontinuities commonly arise in surface modeling and cause problems in downstream operations. Local geometry repair, such as cover holes or replace bad surfaces by adding new surface patches for dealing with inconsistencies among the confluent region, where multiple surfaces meet, is a common technique used in CAD model repair and reverse engineering. However, local geometry repair destroys the topology of original CAD model and increases the number of surface patches needed for freeform surface shape modeling. Consequently, a topology recovery technique dealing with complex freeform surface model after local geometry repair is proposed. Firstly, construct the curve network which determine the geometry and topology properties of recovery freeform surface model; secondly, apply freeform surface fitting method to create B-spline surface patches to recover the topology of trimmed ones. Corresponding to the two levels of enforcing boundary conditions on a B-spline surface, two solution schemes are presented respectively. In the first solution scheme, non-constrained B-spline surface fitting method is utilized to piecewise recover trimmed confluent surface patches and then employs global beautification technique to smoothly stitch the recovery surface patches. In the other solution scheme, constrained B-spline surface fitting technique based on discretization of boundary conditions is directly applied to recover topology of surface model after local geometry repair while achieving G1 continuity simultaneously. The presented two different schemes are applied to the consistent surface model, which consists of five trimmed confluent surface patches and a local consistent surface patch, and a machine cover model, respectively. The application results show that our topology recovery technique meets shape-preserving and G1 continuity requirements in reverse engineering. This research converts the problem of topology recovery for consistent surface model to the problem of constructing G1 patches from a given curve network, and provides a new idea to model repairing study.